Compare commits

...

16 commits

Author SHA1 Message Date
1858fa0ef0 Utiliser le pilote d'autrui 2025-11-25 21:21:57 +01:00
7c51dd43cf Séance 25/11 2025-11-25 19:18:16 +01:00
b24d9812b4 Séance 25/11 2025-11-25 19:14:46 +01:00
8b95eeb0a5 Ajouter servo et IT 2025-11-24 00:13:49 +01:00
1fbbaacfea Moving functions to Girouette/Servo 2025-11-24 00:08:49 +01:00
af0aedc34b Enlever le code des services du raciene 2025-11-23 22:35:56 +01:00
663bef108a Ajouter fonctinnalité comptage/décomptage 2025-11-22 10:36:24 +01:00
5175474912 Ajouter principal.c girouette 2025-11-18 21:37:26 +01:00
277a18fd56 Pilotes avec couche service girouette 2025-11-18 10:45:06 +01:00
4b20cbfb0e MaJ Séance précedent 2025-11-14 13:23:02 +01:00
6561c9942e Actualiser README.md 2025-11-12 14:01:33 +01:00
6c9bdde0f8 Add task list 2025-11-04 10:30:52 +01:00
714d75c245 Actualiser README.md 2025-11-04 10:11:53 +01:00
2683401db9 Actualiser README.md 2025-11-04 09:52:29 +01:00
c9d55d565e Premier commit 2025-11-04 09:48:32 +01:00
cf93972521 Premier commit 2025-11-04 09:47:55 +01:00
18 changed files with 646 additions and 10 deletions

View file

@ -0,0 +1,8 @@
#include <stm32f10x.h>
#include <stdint.h>
void initAccelo(void);
uint16_t * RecupAccelo(void);
void LacheVoile(uint16_t * DATA);
void initLacheur(void);
uint16_t * KattRecupAccelo(void);

17
Pilotes/Include/DriverGPIO.h Executable file
View file

@ -0,0 +1,17 @@
#ifndef DRIVERGPIO_H_
#define DRIVERGPIO_H_
#include "stm32f10x.h"
#define In_Floating 0x4
#define In_PullDown 0x8
#define In_PullUp 0x8
#define In_Analog 0x0
#define Out_Ppull 0x3
#define Out_OD 0x7
#define AltOut_Ppull 0xB
#define AltOut_OD 0xF
extern void MyGPIO_Init(GPIO_TypeDef * GPIO, char pin, char conf );
extern int MyGPIO_Read(GPIO_TypeDef * GPIO, char GPIO_Pin); // renvoie 0 ou autre chose different de 0
extern void MyGPIO_Set(GPIO_TypeDef * GPIO, char GPIO_Pin);
extern void MyGPIO_Reset(GPIO_TypeDef * GPIO, char GPIO_Pin);
extern void MyGPIO_Toggle(GPIO_TypeDef * GPIO, char GPIO_Pin);
#endif

8
Pilotes/Include/Girouette.h Executable file
View file

@ -0,0 +1,8 @@
#ifndef _GIROUETTE_H
#define _GIROUETTE_H
#include "stm32f10x.h"
extern void configEncoder(TIM_TypeDef * Timer);
extern int angleVent (TIM_TypeDef * Timer);
extern int vent2voile(int angle);
extern void LocaliserZero(void);
#endif

16
Pilotes/Include/Horloge.h Executable file
View file

@ -0,0 +1,16 @@
#include <stm32f10x.h>
#define PSC_VAL 624
#define ARR_VAL 0xE0FF
//DUTY CYCLE
#define DUTYC 70 //Chiffre entre 0 et 100, où 100 est 100% duty cycle
#define POWERMODE 1 // 1 vaut powermode 1, 0 vaut powermode 2 (Powermode pour le config de dutycycle)
//Powermode 1 reste sur la bonne polarité: cad. si DUTY_CYCLE vaut 60 alors le signal reste HIGH pour 60% du periode, inverse pour pwmd2
//Timer
void Timer_Init(TIM_TypeDef *Timer, unsigned short Autoreload, unsigned short Prescaler);
void MyTimer_ActiveIT(TIM_TypeDef * Timer, char Prio, void(*Interrupt_fonc)(void));
void TIM2_IRQHandler(void);
//PWM
void MyTimer_PWM(TIM_TypeDef * Timer , int Channel);
int Set_DutyCycle_PWM(TIM_TypeDef *Timer, int Channel, int DutyC);

11
Pilotes/Include/IT.h Executable file
View file

@ -0,0 +1,11 @@
#ifndef IT_H_
#define IT_H_
#include <stm32f10x.h>
static void (*p_IT_functions[4])(void);
void MyTimer_ActiveIT(TIM_TypeDef *Timer, char Prio,void(*IT_function)(void));
void TIM1_CC_IRQHandler(void);
void TIM1_UP_IRQHandler(void);
void TIM2_IRQHandler(void);
void TIM3_IRQHandler(void);
void TIM4_IRQHandler(void);
#endif // IT_H_

9
Pilotes/Include/PWM.h Executable file
View file

@ -0,0 +1,9 @@
#ifndef PWM_H_
#define PWM_H_
#include "stm32f10x.h"
//Variables
#define POWERMODE 2 // 1 vaut powermode 1, 0 vaut powermode 2 (Powermode pour le config de dutycycle)
// Config
extern void MyTimer_PWM(TIM_TypeDef * Timer , int Channel);
extern int Set_DutyCycle_PWM(TIM_TypeDef *Timer, int Channel, int DutyC);
#endif

7
Pilotes/Include/Servo.h Executable file
View file

@ -0,0 +1,7 @@
#ifndef SERVO_H_
#define SERVO_H_
#include <stm32f10x.h>
void Servo_Moteur(int angle, TIM_TypeDef * Timer, int Channel);
extern void initServo(TIM_TypeDef * Timer, int Channel);
#endif // SERVO_H_

8
Pilotes/Include/Timer.h Executable file
View file

@ -0,0 +1,8 @@
#ifndef TIMER_H_
#define TIMER_H_
#include "stm32f10x.h"
// Config de timer
extern void MyTimer_Base_Init(TIM_TypeDef *Timer , unsigned short ValARR , unsigned short ValPSC );
// Enable timers
void EnableTimer(TIM_TypeDef *Timer);
#endif

31
Pilotes/Source/Accelerometre.c Executable file
View file

@ -0,0 +1,31 @@
#include <stm32f10x.h>
#include <Horloge.h>
//#include <MYGPIO.h>
#include <stdlib.h>
#include <stdint.h>
void initLacheur(void){
GPIOB->CRH &= ~(0xF << (0 * 4));
GPIOB->CRH |= (0xA << (0 * 4)); //On met GPIOB.8 en mode output 2Mhz, alternate pp
Timer_Init(TIM4, 20000 - 1, 71); //Claire m'a aidé
}
//Recuperer le DATA en X, Z, Y
void LacheVoile(uint16_t * DATA){
//uint16_t X = DATA[0]; //Z le longe du mât (masten)
//uint16_t Z = DATA[2];// //X le long du sense de voilier
uint16_t Y = DATA[1]; ////Y vers les bords (Tribord/Babord)
if (Y>=0x007B){// exatement à 40 degrés, on lache le 40%. 0xFF*(40deg/90deg)
//Le PWM du moteur est gère par PB7
MyTimer_PWM(TIM4, 3); //TIM4 CH3 pour PB8
Set_DutyCycle_PWM(TIM4, 3, 2); //On met Duty cycle à 2% et il reste autour de 90 deg
}
}

74
Pilotes/Source/DriverGPIO.c Executable file
View file

@ -0,0 +1,74 @@
#include "stm32f10x.h"
#include "DriverGPIO.h"
#define In_Floating 0x4
#define In_PullDown 0x8
#define In_PullUp 0x8
#define In_Analog 0x0
#define Out_Ppull 0x3
#define Out_OD 0x7
#define AltOut_Ppull 0xB
#define AltOut_OD 0xF
void MyGPIO_Init(GPIO_TypeDef * GPIO, char pin, char conf ){
int shift_pin;
//Start clock for relevant GPIO
if(GPIO == GPIOA){
RCC -> APB2ENR |= RCC_APB2ENR_IOPAEN;
}
else if(GPIO == GPIOB){
RCC -> APB2ENR |= RCC_APB2ENR_IOPBEN;
}
else if(GPIO == GPIOC){
RCC -> APB2ENR |= RCC_APB2ENR_IOPCEN;
}
else if(GPIO == GPIOD){
RCC -> APB2ENR |= RCC_APB2ENR_IOPDEN;
}
if(pin < 8){//CRL zone
shift_pin = pin*4;
GPIO -> CRL &= ~(0xF << shift_pin);
//PullUp and PullDown have the same conf number, so we need to change the ODR to diferenciate them both
if(conf == In_PullUp){
GPIO -> CRL |= ( In_PullUp << shift_pin);
GPIO -> ODR |= (1<<pin);
}
else if(conf == In_PullDown){
GPIO -> CRL |= ( In_PullDown << shift_pin);
GPIO -> ODR &= ~(1<<pin);
}
else{
GPIO -> CRL |= ( conf << shift_pin);
}
}
else{//CRH zone
shift_pin = (pin-8)*4;
GPIO -> CRH &= ~(0xF << shift_pin);
if(conf == In_PullUp){
GPIO -> CRH |= ( In_PullUp << shift_pin);
GPIO -> ODR |= (1<<pin);
}
else if(conf == In_PullDown){
GPIO -> CRH |= ( In_PullDown << shift_pin);
GPIO -> ODR &= ~(1<<pin);
}
else{
GPIO -> CRH |= ( conf << shift_pin);
}
}
}
int MyGPIO_Read(GPIO_TypeDef * GPIO, char GPIO_Pin){
return(GPIO -> IDR & (1 << GPIO_Pin));
}
void MyGPIO_Set(GPIO_TypeDef * GPIO, char GPIO_Pin){
GPIO -> BSRR = (1<<GPIO_Pin);//1 on set zone
}
void MyGPIO_Reset(GPIO_TypeDef * GPIO, char GPIO_Pin){
GPIO -> BSRR = (1<<(GPIO_Pin+16));//1 on reset zone
}
void MyGPIO_Toggle(GPIO_TypeDef * GPIO, char GPIO_Pin){
GPIO -> ODR = GPIO -> ODR ^ (0x1 << GPIO_Pin);
}

61
Pilotes/Source/Girouette.c Executable file
View file

@ -0,0 +1,61 @@
#include "stm32f10x.h"
#include "Timer.h"
#include "DriverGPIO.h"
#include "Girouette.h"
#include "PWM.h"
#include <stdlib.h> // Pour abs()
#define POSITIONS (360*4) //0x5A0
void configEncoder(TIM_TypeDef * Timer){
// Timer
EnableTimer(Timer);
// Settings
Timer -> CCMR1 |= TIM_CCMR1_CC1S; // TI1FP1 mapped on TI1
Timer -> CCMR1 |= TIM_CCMR1_CC2S; // TI1FP2 mapped on TI2
Timer -> CCER &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); // TI1FP1 output non-inverted
Timer -> CCMR1 &= ~(TIM_CCMR1_IC1F); // Input capture 1 filter, no filter
Timer -> CCER &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); // TI1FP2 output non-inverted
Timer -> CCMR2 &= ~(TIM_CCMR1_IC2F); // Input capture 2 filter, no filter
Timer -> SMCR &= ~TIM_SMCR_SMS; // Reset SMS-bits
Timer -> SMCR |= TIM_SMCR_SMS_0 | TIM_SMCR_SMS_1;// SMS = "011"
Timer -> CR1 |= TIM_CR1_CEN; // Enable counter
Timer -> ARR = 0x5A0; // Setting ARR as 1440
// GPIO
MyGPIO_Init(GPIOA,0,In_Floating ); // GPIOA pin 0 in mode floating TIM2_CH1
MyGPIO_Init(GPIOA,1,In_Floating ); // GPIOA pin 1 in mode floating TIM2_CH2
MyGPIO_Init(GPIOA,8,In_PullDown ); // GPIOA pin 8 in mode floating Index
}
int angleVent (TIM_TypeDef * Timer){ // Returner l'angle du vent
int angle =(((Timer -> CNT*360)/POSITIONS ));
if (angle > 180){
angle = 360 - angle; // Pour que l'angle soit entre 0 et 180
}
return(angle);
}
int vent2voile(int angle){ // Conversion angle vent à angle voile
if(angle < 45){
return 0; // Les voiles restent immobiles
}
else{
return(2*(angle-45)/3); // Augmentation linéaire
}
}
// Localisation de z
void LocaliserZero(void){
int Z_trouve = 0;
while (Z_trouve != 1){
if(MyGPIO_Read(GPIOA,8)){ // Index
TIM2 -> CNT = 0x0; // Remet angle à zero
Z_trouve = 1;
}
}
}

136
Pilotes/Source/Horloge.c Executable file
View file

@ -0,0 +1,136 @@
#include <stm32f10x.h>
#include <stdio.h>
#include <Horloge.h>
//Il faut trouver le signal
//On est à Timer 2
static void (*TIM2_Appel)(void) = 0;
void Timer_Init(TIM_TypeDef *Timer, unsigned short Autoreload, unsigned short Prescaler){
if (Timer == TIM1) {
RCC->APB2ENR |= RCC_APB2ENR_TIM1EN; //L'horloge est enabléd
} else if (Timer == TIM2) {
TIM2->CR1 |= TIM_CR1_CEN; //On enable l'horloge interne
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
} else if (Timer == TIM3) {
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
} else if (Timer == TIM4) {
RCC->APB1ENR |= RCC_APB1ENR_TIM4EN;
}
Timer->ARR |= Autoreload;
Timer->PSC |= Prescaler;
}
//La fonction TIM2_IRQHandler s'utilise dans le processeur, on l'a juste redifint, tel qu'à chaque overflow on met un bit 1 dans GPIOA_ODR
void TIM2_IRQHandler(void) { //On redefinit le IRQHandler qui est déjà ecrit dans le code source
if (TIM2->SR & TIM_SR_UIF) { //On met le bit de overflow à un dès qu'on a overflow
TIM2->SR &= ~TIM_SR_UIF; //Remise à zero
if (TIM2_Appel){TIM2_Appel();}
}
}
void MyTimer_ActiveIT(TIM_TypeDef * Timer, char Prio, void(*Interrupt_fonc)(void)){ //On veut créer une fonction qui envoie un signal au cas où il y a debordement, avec une prioritaire, 0 plus importante 15 moins importante
if (Timer == TIM2){
TIM2_Appel = Interrupt_fonc;
NVIC_EnableIRQ(TIM2_IRQn);
NVIC_SetPriority(TIM2_IRQn, Prio);
TIM2->DIER |= TIM_DIER_UIE; //Le registre DIER(Interrupt Enable Register) est mis au bit Update Interrupt, qui se commute lors d'un overflow
TIM2->CR1 |= TIM_CR1_CEN; //Clock Enable
}
}
//Fonction qui permet de clignoter le DEL à un pulse volue (Sinusoïdale)
//Si le sinus est haut(haute tension) le Duty Cicle est proche de 100%,
//si le sinus est bas (vers la tension la plus basse) le Duty Cycle est vers 0%
//On s'applique sur un plage de [0V; 3.3V]
void MyTimer_PWM(TIM_TypeDef * Timer , int Channel){
int pwrmd;
#if POWERMODE //Powermode 1
pwrmd = 0b110;
#else
pwrmd = 0b111; //Powermode 2
#endif
if (Channel == 1){
Timer->CCMR1 &= ~(0b111<<4); //On clear les trois bits qui sont de pwm
Timer->CCMR1 |= (pwrmd<<4); //On affecte le powermode au bits de lecture pour le µ-controlleur
Timer->CCMR1 |= TIM_CCMR1_OC1PE; //Update preload, il n'affecte pas le valeur avant que la prochaine cycle
Timer->CCER = TIM_CCER_CC1E; //Enable le pin voulu basculer
}
else if (Channel == 2){
Timer->CCMR1 &= ~(0b111<<12); //Le TIMx_CCMR1 configure deux channels, de bit [6:4] CH1, [14:12] CH2 (OC2M = Output Channel 2 )
Timer->CCMR1 |= (pwrmd<<12);
Timer->CCMR1 |= TIM_CCMR1_OC2PE;
Timer->CCER |= TIM_CCER_CC2E;
}
else if (Channel == 3){
Timer->CCMR1 &= ~(0b111<<4);
Timer->CCMR2 |= (pwrmd<<4);
Timer->CCMR2 |= TIM_CCMR2_OC3PE;
Timer->CCER |= TIM_CCER_CC3E;
}
else if (Channel == 4){
Timer->CCMR1 &= ~(0b111<<12);
Timer->CCMR2 |= (pwrmd<<12);
Timer->CCMR2 |= TIM_CCMR2_OC4PE;
Timer->CCER |= TIM_CCER_CC4E;
}
//En dessous d'ici, on a l'aide du plus gentil chat que je connais
// Enable auto-reload preload -- //Ensures that your initial configuration — PWM mode, duty cycle, period — actually takes effect before the timer starts counting.
Timer->CR1 |= TIM_CR1_ARPE;
// Force update event to load ARR and CCR values immediately
Timer->EGR |= TIM_EGR_UG;
// Start the timer
Timer->CR1 |= TIM_CR1_CEN;
switch (Channel) {
case 1:
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<0*4); GPIOA->CRH |= (0xA<<0*4); TIM1->BDTR |= 1<<15; }
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<0*4); GPIOA->CRL |= (0xA<<0*4);}
if (Timer == TIM3){GPIOA->CRL &= ~(0xF<<6*4); GPIOA->CRL |= (0xA<<6*4);}
if (Timer == TIM4){GPIOB->CRL &= ~(0xF<<5*4); GPIOB->CRL |= (0xA<<5*4);}
break;
case 2:
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<1*4); GPIOA->CRL |= (0xA<<1*4); TIM1->BDTR |= 1<<15;}
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<1*4); GPIOA->CRL |= (0xA<<1*4);}
if (Timer == TIM3){GPIOA->CRL &= ~(0xF<<7*4); GPIOA->CRL |= (0xA<<7*4);}
if (Timer == TIM4){GPIOB->CRL &= ~(0xF<<7*4); GPIOB->CRL |= (0xA<<7*4);}
break;
case 3:
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<2*4); GPIOA->CRH |= (0xA<<2*4); TIM1->BDTR |= 1<<15;}
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<2*4); GPIOA->CRL |= (0xA<<2*4);}
if (Timer == TIM3){GPIOB->CRL &= ~(0xF<<0*4); GPIOB->CRL |= (0xA<<0*4);}
if (Timer == TIM4){GPIOB->CRH &= ~(0xF<<0*4); GPIOB->CRH |= (0xA<<0*4);}
break;
case 4:
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<3*4); GPIOA->CRH |= (0xA<<3*4); TIM1->BDTR |= 1<<15;}
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<3*4); GPIOA->CRL |= (0xA<<3*4);}
if (Timer == TIM3){GPIOB->CRL &= ~(0xF<<1*4); GPIOB->CRL |= (0xA<<1*4);}
if (Timer == TIM4){GPIOB->CRH &= ~(0xF<<1*4); GPIOB->CRH |= (0xA<<1*4);}
}
}
//Une fonction qui met le bon PWM volue
int Set_DutyCycle_PWM(TIM_TypeDef *Timer, int Channel, int DutyC){
int CCR_VAL = (ARR_VAL + 1) * DutyC / 100; //ARR_VAL déjà definie
switch (Channel){
case 1: Timer->CCR1 = CCR_VAL;
case 2: Timer->CCR2 = CCR_VAL;
case 3: Timer->CCR3 = CCR_VAL;
case 4: Timer->CCR4 = CCR_VAL;
default: break;
}
return 0;
Timer->EGR |= TIM_EGR_UG;
}

73
Pilotes/Source/IT.c Executable file
View file

@ -0,0 +1,73 @@
#include "IT.h"
static void (*p_IT_functions[4])(void); // Pour créer l'array des fonctions
void MyTimer_ActiveIT(TIM_TypeDef *Timer, char Prio,void(*IT_function)(void)) {
//Enable interruption requisition
Timer->DIER |= TIM_DIER_UIE; // Update interrupt enable
//Id the interruption timer routine
IRQn_Type IRQn;
int timer_index = -1; // Indice pour notre array des pointeurs
if (Timer == TIM2) {
IRQn = TIM2_IRQn;
timer_index = 0;
} else if (Timer == TIM3) {
IRQn = TIM3_IRQn;
timer_index = 1;
} else if (Timer == TIM4) {
IRQn = TIM4_IRQn;
timer_index = 2;
}
// Keep the pointer of the valid timer function
if (timer_index != -1) {
p_IT_functions[timer_index] = IT_function; // index the function
} else {
return; // Timer invalid
}
// set interruption priority
NVIC_SetPriority(IRQn, Prio);
// Enable routine
NVIC_EnableIRQ(IRQn);
}
void TIM2_IRQHandler(void) {
// Clean flag
TIM2->SR &= ~TIM_SR_UIF; // Drapeau d'interuption
//Call function
if (p_IT_functions[0] != 0) {
p_IT_functions[0](); // Execute fonction
}
};
void TIM3_IRQHandler(void) {
// Clean flag
TIM3->SR &= ~TIM_SR_UIF;
//Call function
if (p_IT_functions[1] != 0) {
p_IT_functions[1](); // Execute function
}
};
void TIM4_IRQHandler(void) {
// Clean flag
TIM4->SR &= ~TIM_SR_UIF;
//Call function
if (p_IT_functions[2] != 0) {
p_IT_functions[2](); // Execute function
}
};
// IT PWM
void TIM1_CC_IRQHandler(void) {
// Clean flag
TIM1 -> DIER &= ~TIM_DIER_CC1IE;
//Set bit
GPIOA -> ODR |= (0x1 << 8);
};
void TIM1_UP_IRQHandler(void) {
// Clean flag
TIM1-> DIER &= ~TIM_DIER_TIE;
//Reset bit
GPIOA -> ODR &= ~(0x1 << 8);
};

85
Pilotes/Source/PWM.c Executable file
View file

@ -0,0 +1,85 @@
#include "stm32f10x.h"
#include "PWM.h"
void MyTimer_PWM(TIM_TypeDef * Timer , int Channel){
int pwrmd;
#if POWERMODE //Powermode 1
pwrmd = 0b110;
#else
pwrmd = 0b111; //Powermode 2
#endif
if (Channel == 1){
Timer->CCMR1 &= ~(0b111<<4); //On clear les trois bits qui sont de pwm
Timer->CCMR1 |= (pwrmd<<4); //On affecte le powermode au bits de lecture pour le µ-controlleur
Timer->CCMR1 |= TIM_CCMR1_OC1PE; //Update preload, il n'affecte pas le valeur avant que la prochaine cycle
Timer->CCER = TIM_CCER_CC1E; //Enable le pin voulu basculer
}
else if (Channel == 2){
Timer->CCMR1 &= ~(0b111<<12); //Le TIMx_CCMR1 configure deux channels, de bit [6:4] CH1, [14:12] CH2 (OC2M = Output Channel 2 )
Timer->CCMR1 |= (pwrmd<<12);
Timer->CCMR1 |= TIM_CCMR1_OC2PE;
Timer->CCER |= TIM_CCER_CC2E;
}
else if (Channel == 3){
Timer->CCMR1 &= ~(0b111<<4);
Timer->CCMR2 |= (pwrmd<<4);
Timer->CCMR2 |= TIM_CCMR2_OC3PE;
Timer->CCER |= TIM_CCER_CC3E;
}
else if (Channel == 4){
Timer->CCMR1 &= ~(0b111<<12);
Timer->CCMR2 |= (pwrmd<<12);
Timer->CCMR2 |= TIM_CCMR2_OC4PE;
Timer->CCER |= TIM_CCER_CC4E;
}
//En dessous d'ici, on a l'aide du plus gentil chat que je connais
// Enable auto-reload preload -- //Ensures that your initial configuration — PWM mode, duty cycle, period — actually takes effect before the timer starts counting.
Timer->CR1 |= TIM_CR1_ARPE;
// Force update event to load ARR and CCR values immediately
Timer->EGR |= TIM_EGR_UG;
// Start the timer
Timer->CR1 |= TIM_CR1_CEN;
switch (Channel) {
case 1:
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<0*4); GPIOA->CRH |= (0xA<<0*4); TIM1->BDTR |= 1<<15; }
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<0*4); GPIOA->CRL |= (0xA<<0*4);}
if (Timer == TIM3){GPIOA->CRL &= ~(0xF<<6*4); GPIOA->CRL |= (0xA<<6*4);}
if (Timer == TIM4){GPIOB->CRL &= ~(0xF<<5*4); GPIOB->CRL |= (0xA<<5*4);}
break;
case 2:
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<1*4); GPIOA->CRL |= (0xA<<1*4); TIM1->BDTR |= 1<<15;}
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<1*4); GPIOA->CRL |= (0xA<<1*4);}
if (Timer == TIM3){GPIOA->CRL &= ~(0xF<<7*4); GPIOA->CRL |= (0xA<<7*4);}
if (Timer == TIM4){GPIOB->CRL &= ~(0xF<<7*4); GPIOB->CRL |= (0xA<<7*4);}
break;
case 3:
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<2*4); GPIOA->CRH |= (0xA<<2*4); TIM1->BDTR |= 1<<15;}
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<2*4); GPIOA->CRL |= (0xA<<2*4);}
if (Timer == TIM3){GPIOB->CRL &= ~(0xF<<0*4); GPIOB->CRL |= (0xA<<0*4);}
if (Timer == TIM4){GPIOB->CRH &= ~(0xF<<0*4); GPIOB->CRH |= (0xA<<0*4);}
break;
case 4:
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<3*4); GPIOA->CRH |= (0xA<<3*4); TIM1->BDTR |= 1<<15;}
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<3*4); GPIOA->CRL |= (0xA<<3*4);}
if (Timer == TIM3){GPIOB->CRL &= ~(0xF<<1*4); GPIOB->CRL |= (0xA<<1*4);}
if (Timer == TIM4){GPIOB->CRH &= ~(0xF<<1*4); GPIOB->CRH |= (0xA<<1*4);}
}
}
//Une fonction qui met le bon PWM voulu
int Set_DutyCycle_PWM(TIM_TypeDef *Timer, int Channel, int DutyC){
int CCR_VAL = (Timer -> ARR + 1) * DutyC / 100;
switch (Channel){
case 1: Timer->CCR1 = CCR_VAL;
case 2: Timer->CCR2 = CCR_VAL;
case 3: Timer->CCR3 = CCR_VAL;
case 4: Timer->CCR4 = CCR_VAL;
default: break;
}
return 0;
Timer->EGR |= TIM_EGR_UG;
}

29
Pilotes/Source/Servo.c Executable file
View file

@ -0,0 +1,29 @@
#include "Servo.h"
#include "DriverGPIO.h"
#include "PWM.h"
#include "Timer.h"
void Servo_Moteur(int angle, TIM_TypeDef * Timer, int Channel){ // Controle du moteur
int dutyCycle = (5* angle + 5*90)/90; // 5-10 % Duty Cycle
Set_DutyCycle_PWM(Timer, Channel, dutyCycle);
}
void initServo(TIM_TypeDef * Timer, int Channel){ // Config du moteur servo
if (Timer == TIM4) {
EnableTimer(TIM4);
//MyTimer_Base_Init(TIM4, 20000 - 1, 71);
MyTimer_Base_Init(TIM4, 0xFFFF, 22); // Pour obtenir un période de 20 ms
if (Channel == 3){
MyGPIO_Init(GPIOB, 8, AltOut_Ppull); // Outut push pull alternate
MyTimer_PWM(TIM4, 3); //TIM4 CH3 pour PB8
}
else{
//printf("Cet pilôte n'existe pas");
}
}
else{
//printf("Cet pilôte n'existe pas");
}
}

27
Pilotes/Source/Timer.c Executable file
View file

@ -0,0 +1,27 @@
#include "stm32f10x.h"
#include "Timer.h"
void MyTimer_Base_Init( TIM_TypeDef * Timer , unsigned short ValARR , unsigned short ValPSC ) { // Configuration du timer
Timer -> PSC=(ValPSC);
Timer-> ARR = (ValARR);
Timer->EGR |= TIM_EGR_UG;
};
void EnableTimer(TIM_TypeDef *Timer){
if(Timer == TIM2){
RCC -> APB1ENR |= RCC_APB1ENR_TIM2EN;
}
else if(Timer == TIM3){
RCC -> APB1ENR |= RCC_APB1ENR_TIM3EN;
}
else if(Timer == TIM4){
RCC -> APB1ENR |= RCC_APB1ENR_TIM4EN;
}
else if(Timer == TIM1){
RCC->APB2ENR |= RCC_APB2ENR_TIM1EN;
}
else{
}
}

View file

@ -8,19 +8,29 @@ Bem vindo ao projeto veleiro de µcontroladores 4AE-SE 2025.
Welkom bij het microcontroller zeilbootproject 4AE-SE 2025.
##Les groupes et résponsabilités sont :
>>Nicolas et Jarno : Envoi de UART et PWM dans la bonne fréquence (canal), pour relier le voilier à l'ecran.
## Partie girouette
Par Tiago et Oskar
>>Aleksander et Brage : Acceleromètre par I2C. La chûte du voilier envoie la commande de faire lâcher les voiles.
Cette branche contient la couche girouette et eventuellement une couche pilote.
>>Oskar et Tiago : Controler les voiles avec les données de la girouette.
## Tâches et pseudocode
>>En commun : Géstion de la pile avec l'ADC et clock interne avec CMOS.
<img src="https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Fc2.staticflickr.com%2F6%2F5229%2F5681377563_4d4e274d51_b.jpg&f=1&nofb=1&ipt=cbe9495133b91e29c85ebc218df03cb9e58fc50148b045a8933418eb060146ad" alt="Le voilier Sørlandet au large des côtes canadiennes">
License : CC-BY-NC-SA 4.0
Mesurer l'angle de girouette.
- EnableTimer
- Mesurer le delta cap
Fonctions à coder :
ConfigGironde
IcrementerTimer
EnableCounter (TIMx_CR1_CEN)
Contrôler les voiles
- Avec le PWM pour réaligner le bateau
1. Timer 1 (ref. 15.3.12 Manual STM32)
- Alimentation de la girouette
- Enable timer 2
- Créer 2 variables de GPIO input pour voie A et B
- Comparateur channel 1 et 2
- Mettre à disposistion un compteur avec un registre ou avec un variable
-

26
principal.c Executable file
View file

@ -0,0 +1,26 @@
#include <stm32f10x.h>
#include <stdio.h> // Pour print
#include "Girouette.h"
#include "Servo.h"
//Variables
int angleVentVar;
int angleVoileVar;
int main ( void ){
// ---- Setup ------
//Servo.c
initServo(TIM4, 3);
// Giroutte.c
configEncoder(TIM2);
LocaliserZero();
// ----- Opération -----
while (1){
angleVentVar = angleVent(TIM2); // Récupérer l'angle de girouette
angleVoileVar = vent2voile(angleVentVar); // Transformer l'angle de girouette au l'angle des voiles souhaités
Servo_Moteur(angleVoileVar, TIM4, 3); // Faire bouger le moteur servo
}
};