TP1_Intro_Modelisation/EA.py
2023-05-09 22:19:36 +02:00

31 lines
1,011 B
Python

import numpy as np
import sympy
import matplotlib.pyplot as plt
def EA1(xi,alpha):
return 1-np.sqrt(1-2*alpha*(1-alpha)*(1-np.cos(xi)))
def EA2(xi,alpha):
return 1-np.sqrt(1-(alpha**2)*(1-alpha**2)*((1-np.cos(xi))**2))
def EA3(xi,alpha):
theta=xi/2
return 1-np.sqrt((1-2*alpha*(np.sin(theta)**2)*(1-(1-alpha)*(np.cos(theta)**2)))**2
+(2*alpha*np.cos(theta)*np.sin(theta)*(1+(1-alpha)*(np.sin(theta)**2)))**2)
xi = np.linspace(0,np.pi/8,1000)
for alpha in [0.2,0.5,0.8]:
fig=plt.figure(1)
plt.title(r"Erreur d'amplitude en fonction de $\zeta$ pour CFL = "+str(alpha))
plt.xlabel(r'$\zeta$')
plt.ylabel(r'$E_A$')
plt.axis([-0.02 , np.pi/8+0.02 , 1e-15, 1e-1])
plt.semilogy(xi,EA1(xi,alpha),'-g',label="Schema 1")
plt.semilogy(xi,EA2(xi,alpha),'-b',label="Schema 2")
plt.semilogy(xi,EA3(xi,alpha),'-r',label="Schema 3")
plt.legend()
plt.grid(True)
plt.show(block=False)
#plt.savefig("EA"+"_CFL ="+str(alpha)+".png")
plt.close('all')