import numpy as np import sympy import matplotlib.pyplot as plt def EA1(xi,alpha): return 1-np.sqrt(1-2*alpha*(1-alpha)*(1-np.cos(xi))) def EA2(xi,alpha): return 1-np.sqrt(1-(alpha**2)*(1-alpha**2)*((1-np.cos(xi))**2)) def EA3(xi,alpha): theta=xi/2 return 1-np.sqrt((1-2*alpha*(np.sin(theta)**2)*(1-(1-alpha)*(np.cos(theta)**2)))**2 +(2*alpha*np.cos(theta)*np.sin(theta)*(1+(1-alpha)*(np.sin(theta)**2)))**2) xi = np.linspace(0,np.pi/8,1000) for alpha in [0.2,0.5,0.8]: fig=plt.figure(1) plt.title(r"Erreur d'amplitude en fonction de $\zeta$ pour CFL = "+str(alpha)) plt.xlabel(r'$\zeta$') plt.ylabel(r'$E_A$') plt.axis([-0.02 , np.pi/8+0.02 , 1e-15, 1e-1]) plt.semilogy(xi,EA1(xi,alpha),'-g',label="Schema 1") plt.semilogy(xi,EA2(xi,alpha),'-b',label="Schema 2") plt.semilogy(xi,EA3(xi,alpha),'-r',label="Schema 3") plt.legend() plt.grid(True) plt.show(block=False) #plt.savefig("EA"+"_CFL ="+str(alpha)+".png") plt.close('all')