aled paul

This commit is contained in:
Clément Lacau 2023-06-03 17:27:38 +02:00
parent ebf87d231c
commit ce5b4e560c

View file

@ -70,7 +70,7 @@ def stats_NFBP_iter(R, N):
IVarianceSum = 0
HSum = [0 for _ in range(N)]
HSumVariance = [0 for _ in range(N)]
Sum_T=[]
Sum_T=[0 for _ in range(10)]
Sum_V=[]
Sum_H=[]
for i in range(R):
@ -80,34 +80,36 @@ def stats_NFBP_iter(R, N):
for n in range(N):
HSum[n] += sim["H"][n]
HSumVariance[n] += sim["H"][n]**2
Sum_T=Sum_T+sim['T']
T=sim['T']
for i in range(5):
T.append(0)
Sum_T=[x+y for x,y in zip(Sum_T,T)]
Sum_H=Sum_H+sim['H']
for k in range(sim['i']):
#we use round to approximate variations of continuous variable V
Sum_V.append(round(sim['V'][k],2))
Sum_T=[x/R for x in Sum_T]
print(Sum_T)
I = ISum/R
IVariance = sqrt(IVarianceSum/(R-1) - I**2)
print("Mean number of boxes : {} (variance {})".format(I, IVariance),'\n')
print(" {} * {} iterations of T".format(R,N),'\n')
#Plotting
#fig = plt.figure()
#ax = fig.add_subplot(111)
#matplotlib.stairs(Sum_T,bins=[0,1,2,3,4])
#ax.hist(Sum_T, bins=8, edgecolor='k', density=True, label='Valeurs empiriques')
#ax.set(xlim=(0, 8), xticks=np.arange(1, 8),
#ylim=(0, 500), yticks=np.linspace(0, 56, 9))
#ax.legend()
#plt.show()
#plt.style.use('_mpl-gallery')
#make data
#plot:
#fig = plt.subplots()
fig = plt.figure()
#T plot
x = np.arange(7)
print(x)
ax = fig.add_subplot(221)
ax.hist(Sum_T, bins=6, linewidth=0.5, edgecolor="white", label='Empirical values')
ax.set(xlim=(0, 6), xticks=np.arange(0, 6),ylim=(0, 6000), yticks=np.linspace(0, 6000, 9))
ax.bar(x,Sum_T, width=1, edgecolor="white", linewidth=0.7)
# ax.hist(Sum_T, bins=6, linewidth=0.5, edgecolor="white", label='Empirical values')
ax.set(xlim=(0, 10), xticks=np.arange(0, 10),ylim=(0,10), yticks=np.linspace(0, 10, 1))
ax.set_title('T histogram for {} packages (Number of packages in each box)'.format(P))
ax.legend()
#V plot
@ -168,28 +170,51 @@ def stats_NFDBP(R, N):
Runs R runs of NFDBP (for N packages) and studies distribution, variance, mean...
"""
print("Running {} NFDBP simulations with {} packages".format(R, N))
P=N*R
I = []
H = [[] for _ in range(N)] # List of empty lists
Tmean=[]
T=[]
Sum_T=[]
#First iteration to use zip after
sim=simulate_NFDBP(N)
Sum_T=sim["T"]
for i in range(R):
sim = simulate_NFDBP(N)
I.append(sim["i"])
for n in range(N):
H[n].append(sim["H"][n])
T=sim["T"]
for k in range(10):
Sum_T.append(0)
for k in range(sim["i"]):
# for o in range(sim["i"]):
#Tmean+=sim["T"]
Tmean.append(T[k])
Sum_T=[x+y for x,y in zip(Sum_T,sim["T"])]
print(Sum_T)
print(sum(Sum_T))
print(P)
Sum_T=[x*100/(sum(Sum_T)) for x in Sum_T]
print(Sum_T)
print("Mean number of boxes : {} (variance {})".format(mean(I), variance(I)))
for n in range(N):
print("Mean H_{} : {} (variance {})".format(n, mean(H[n]), variance(H[n])))
for k in range(int(sim["i"])):
print("Mean T_{} : {} (variance {})".format(k, mean(Tmean), variance(Tmean)))
#Plotting
fig, ax = plt.subplots()
#T plot
x = 0.5 + np.arange(8)
x=x.tolist()
print(type(x))
print(x)
ax.bar(x, Sum_T, width=1, edgecolor="white", linewidth=0.5)
ax.set(xlim=(0, 10), xticks=np.arange(0, 10),ylim=(0, 25), yticks=np.linspace(0, 25, 9))
ax.set_title('Repartition of packets in each box percents for {} packages '.format(P))
ax.legend()
plt.show()
N = 10 ** 1
sim = simulate_NFBP(N)
@ -213,7 +238,7 @@ for j in range(sim["i"] + 1):
print()
stats_NFBP_iter(10**3, 10)
stats_NFDBP(10 ** 3, 10)
#stats_NFDBP(10 ** 3, 10)
#
#pyplot.plot([1, 2, 4, 4, 2, 1], color = 'red', linestyle = 'dashed', linewidth = 2,
#markerfacecolor = 'blue', markersize = 5)