Projet_Boites/Probas.py
Clément Lacau ce5b4e560c aled paul
2023-06-03 17:27:38 +02:00

247 lines
8.2 KiB
Python
Executable file

#!/usr/bin/python3
from random import random
from math import floor, sqrt
from statistics import mean, variance
from matplotlib import pyplot as plt
from pylab import *
import numpy as np
def simulate_NFBP(N):
"""
Tries to simulate T_i, V_i and H_n for N packages of random size.
"""
i = 0 # Nombre de boites
R = [0] # Remplissage de la i-eme boite
T = [0] # Nombre de paquets de la i-eme boite
V = [0] # Taille du premier paquet de la i-eme boite
H = [] # Rang de la boite contenant le n-ieme paquet
for n in range(N):
size = random()
if R[i] + size >= 1:
# Il y n'y a plus de la place dans la boite pour le paquet.
# On passe à la boite suivante (qu'on initialise)
i += 1
R.append(0)
T.append(0)
V.append(0)
R[i] += size
T[i] += 1
if V[i] == 0:
# C'est le premier paquet de la boite
V[i] = size
H.append(i)
return {
"i": i,
"R": R,
"T": T,
"V": V,
"H": H
}
def stats_NFBP(R, N):
"""
Runs R runs of NFBP (for N packages) and studies distribution, variance, mean...
"""
print("Running {} NFBP simulations with {} packages".format(R, N))
I = []
H = [[] for _ in range(N)] # List of empty lists
for i in range(R):
sim = simulate_NFBP(N)
I.append(sim["i"])
for n in range(N):
H[n].append(sim["H"][n])
print("Mean number of boxes : {} (variance {})".format(mean(I), variance(I)))
for n in range(N):
print("Mean H_{} : {} (variance {})".format(n, mean(H[n]), variance(H[n])))
def stats_NFBP_iter(R, N):
"""
Runs R runs of NFBP (for N packages) and studies distribution, variance, mean...
Calculates stats during runtime instead of after to avoid excessive memory usage.
"""
P=R*N
print("Running {} NFBP simulations with {} packages".format(R, N))
ISum = 0
IVarianceSum = 0
HSum = [0 for _ in range(N)]
HSumVariance = [0 for _ in range(N)]
Sum_T=[0 for _ in range(10)]
Sum_V=[]
Sum_H=[]
for i in range(R):
sim = simulate_NFBP(N)
ISum += sim["i"]
IVarianceSum += sim["i"]**2
for n in range(N):
HSum[n] += sim["H"][n]
HSumVariance[n] += sim["H"][n]**2
T=sim['T']
for i in range(5):
T.append(0)
Sum_T=[x+y for x,y in zip(Sum_T,T)]
Sum_H=Sum_H+sim['H']
for k in range(sim['i']):
#we use round to approximate variations of continuous variable V
Sum_V.append(round(sim['V'][k],2))
Sum_T=[x/R for x in Sum_T]
print(Sum_T)
I = ISum/R
IVariance = sqrt(IVarianceSum/(R-1) - I**2)
print("Mean number of boxes : {} (variance {})".format(I, IVariance),'\n')
print(" {} * {} iterations of T".format(R,N),'\n')
#Plotting
#matplotlib.stairs(Sum_T,bins=[0,1,2,3,4])
#ax.hist(Sum_T, bins=8, edgecolor='k', density=True, label='Valeurs empiriques')
#ax.set(xlim=(0, 8), xticks=np.arange(1, 8),
#ylim=(0, 500), yticks=np.linspace(0, 56, 9))
#plot:
#fig = plt.subplots()
fig = plt.figure()
#T plot
x = np.arange(7)
print(x)
ax = fig.add_subplot(221)
ax.bar(x,Sum_T, width=1, edgecolor="white", linewidth=0.7)
# ax.hist(Sum_T, bins=6, linewidth=0.5, edgecolor="white", label='Empirical values')
ax.set(xlim=(0, 10), xticks=np.arange(0, 10),ylim=(0,10), yticks=np.linspace(0, 10, 1))
ax.set_title('T histogram for {} packages (Number of packages in each box)'.format(P))
ax.legend()
#V plot
bx = fig.add_subplot(222)
bx.hist(Sum_V, bins=10, linewidth=0.5, edgecolor="white", label='Empirical values')
bx.set(xlim=(0, 1), xticks=np.arange(0, 1),ylim=(0, 1000), yticks=np.linspace(0, 1000, 9))
bx.set_title('V histogram for {} packages (first package size of each box)'.format(P))
bx.legend()
#H plot
cx = fig.add_subplot(223)
cx.hist(Sum_H, bins=10, linewidth=0.5, edgecolor="white", label='Empirical values')
cx.set(xlim=(0, 10), xticks=np.arange(0, 10),ylim=(0, 2000), yticks=np.linspace(0, 2000, 9))
cx.set_title('H histogram for {} packages'.format(P))
cx.legend()
plt.show()
for n in range(n):
Hn = HSum[n]/R
HVariance = sqrt(HSumVariance[n]/(R-1) - Hn**2)
print("Index of box containing the {}th package (H_{}) : {} (variance {})".format(n, n, Hn, HVariance))
def simulate_NFDBP(N):
"""
Tries to simulate T_i, V_i and H_n for N packages of random size.
"""
i = 0 # Nombre de boites
R = [0] # Remplissage de la i-eme boite
T = [0] # Nombre de paquets de la i-eme boite
V = [0] # Taille du premier paquet de la i-eme boite
H = [] # Rang de la boite contenant le n-ieme paquet
for n in range(N):
size = random()
R[i] += size
T[i] += 1
if R[i] + size >= 1:
# Il y n'y a plus de la place dans la boite pour le paquet.
# On passe à la boite suivante (qu'on initialise)
i += 1
R.append(0)
T.append(0)
V.append(0)
if V[i] == 0:
# C'est le premier paquet de la boite
V[i] = size
H.append(i)
return {
"i": i,
"R": R,
"T": T,
"V": V,
"H": H
}
def stats_NFDBP(R, N):
"""
Runs R runs of NFDBP (for N packages) and studies distribution, variance, mean...
"""
print("Running {} NFDBP simulations with {} packages".format(R, N))
P=N*R
I = []
H = [[] for _ in range(N)] # List of empty lists
Tmean=[]
T=[]
Sum_T=[]
#First iteration to use zip after
sim=simulate_NFDBP(N)
Sum_T=sim["T"]
for i in range(R):
sim = simulate_NFDBP(N)
I.append(sim["i"])
for n in range(N):
H[n].append(sim["H"][n])
T=sim["T"]
for k in range(10):
Sum_T.append(0)
for k in range(sim["i"]):
Tmean.append(T[k])
Sum_T=[x+y for x,y in zip(Sum_T,sim["T"])]
print(Sum_T)
print(sum(Sum_T))
print(P)
Sum_T=[x*100/(sum(Sum_T)) for x in Sum_T]
print(Sum_T)
print("Mean number of boxes : {} (variance {})".format(mean(I), variance(I)))
for n in range(N):
print("Mean H_{} : {} (variance {})".format(n, mean(H[n]), variance(H[n])))
print("Mean T_{} : {} (variance {})".format(k, mean(Tmean), variance(Tmean)))
#Plotting
fig, ax = plt.subplots()
#T plot
x = 0.5 + np.arange(8)
x=x.tolist()
print(type(x))
print(x)
ax.bar(x, Sum_T, width=1, edgecolor="white", linewidth=0.5)
ax.set(xlim=(0, 10), xticks=np.arange(0, 10),ylim=(0, 25), yticks=np.linspace(0, 25, 9))
ax.set_title('Repartition of packets in each box percents for {} packages '.format(P))
ax.legend()
plt.show()
N = 10 ** 1
sim = simulate_NFBP(N)
print("Simulation NFBP pour {} packaets. Contenu des boites :".format(N))
for j in range(sim["i"] + 1):
remplissage = floor(sim["R"][j] * 100)
print("Boite {} : Rempli à {} % avec {} paquets. Taille du premier paquet : {}".format(j, remplissage, sim["T"][j],
sim["V"][j]))
print()
stats_NFBP(10 ** 3, 10)
N = 10 ** 1
sim = simulate_NFDBP(N)
print("Simulation NFDBP pour {} packaets. Contenu des boites :".format(N))
for j in range(sim["i"] + 1):
remplissage = floor(sim["R"][j] * 100)
print("Boite {} : Rempli à {} % avec {} paquets. Taille du premier paquet : {}".format(j, remplissage,
sim["T"][j],
sim["V"][j]))
print()
stats_NFBP_iter(10**3, 10)
#stats_NFDBP(10 ** 3, 10)
#
#pyplot.plot([1, 2, 4, 4, 2, 1], color = 'red', linestyle = 'dashed', linewidth = 2,
#markerfacecolor = 'blue', markersize = 5)
#pyplot.ylim(0, 5)
#pyplot.title('Un exemple')
#show()