Séance 25/11

This commit is contained in:
Oskar Orvik 2025-11-25 19:18:16 +01:00
parent b24d9812b4
commit 7c51dd43cf
4 changed files with 191 additions and 0 deletions

View file

@ -0,0 +1,8 @@
#include <stm32f10x.h>
#include <stdint.h>
void initAccelo(void);
uint16_t * RecupAccelo(void);
void LacheVoile(uint16_t * DATA);
void initLacheur(void);
uint16_t * KattRecupAccelo(void);

16
Pilotes/Include/Horloge.h Executable file
View file

@ -0,0 +1,16 @@
#include <stm32f10x.h>
#define PSC_VAL 624
#define ARR_VAL 0xE0FF
//DUTY CYCLE
#define DUTYC 70 //Chiffre entre 0 et 100, où 100 est 100% duty cycle
#define POWERMODE 1 // 1 vaut powermode 1, 0 vaut powermode 2 (Powermode pour le config de dutycycle)
//Powermode 1 reste sur la bonne polarité: cad. si DUTY_CYCLE vaut 60 alors le signal reste HIGH pour 60% du periode, inverse pour pwmd2
//Timer
void Timer_Init(TIM_TypeDef *Timer, unsigned short Autoreload, unsigned short Prescaler);
void MyTimer_ActiveIT(TIM_TypeDef * Timer, char Prio, void(*Interrupt_fonc)(void));
void TIM2_IRQHandler(void);
//PWM
void MyTimer_PWM(TIM_TypeDef * Timer , int Channel);
int Set_DutyCycle_PWM(TIM_TypeDef *Timer, int Channel, int DutyC);

31
Pilotes/Source/Accelerometre.c Executable file
View file

@ -0,0 +1,31 @@
#include <stm32f10x.h>
#include <Horloge.h>
//#include <MYGPIO.h>
#include <stdlib.h>
#include <stdint.h>
void initLacheur(void){
GPIOB->CRH &= ~(0xF << (0 * 4));
GPIOB->CRH |= (0xA << (0 * 4)); //On met GPIOB.8 en mode output 2Mhz, alternate pp
Timer_Init(TIM4, 20000 - 1, 71); //Claire m'a aidé
}
//Recuperer le DATA en X, Z, Y
void LacheVoile(uint16_t * DATA){
//uint16_t X = DATA[0]; //Z le longe du mât (masten)
//uint16_t Z = DATA[2];// //X le long du sense de voilier
uint16_t Y = DATA[1]; ////Y vers les bords (Tribord/Babord)
if (Y>=0x007B){// exatement à 40 degrés, on lache le 40%. 0xFF*(40deg/90deg)
//Le PWM du moteur est gère par PB7
MyTimer_PWM(TIM4, 3); //TIM4 CH3 pour PB8
Set_DutyCycle_PWM(TIM4, 3, 2); //On met Duty cycle à 2% et il reste autour de 90 deg
}
}

136
Pilotes/Source/Horloge.c Executable file
View file

@ -0,0 +1,136 @@
#include <stm32f10x.h>
#include <stdio.h>
#include <Horloge.h>
//Il faut trouver le signal
//On est à Timer 2
static void (*TIM2_Appel)(void) = 0;
void Timer_Init(TIM_TypeDef *Timer, unsigned short Autoreload, unsigned short Prescaler){
if (Timer == TIM1) {
RCC->APB2ENR |= RCC_APB2ENR_TIM1EN; //L'horloge est enabléd
} else if (Timer == TIM2) {
TIM2->CR1 |= TIM_CR1_CEN; //On enable l'horloge interne
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
} else if (Timer == TIM3) {
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
} else if (Timer == TIM4) {
RCC->APB1ENR |= RCC_APB1ENR_TIM4EN;
}
Timer->ARR |= Autoreload;
Timer->PSC |= Prescaler;
}
//La fonction TIM2_IRQHandler s'utilise dans le processeur, on l'a juste redifint, tel qu'à chaque overflow on met un bit 1 dans GPIOA_ODR
void TIM2_IRQHandler(void) { //On redefinit le IRQHandler qui est déjà ecrit dans le code source
if (TIM2->SR & TIM_SR_UIF) { //On met le bit de overflow à un dès qu'on a overflow
TIM2->SR &= ~TIM_SR_UIF; //Remise à zero
if (TIM2_Appel){TIM2_Appel();}
}
}
void MyTimer_ActiveIT(TIM_TypeDef * Timer, char Prio, void(*Interrupt_fonc)(void)){ //On veut créer une fonction qui envoie un signal au cas où il y a debordement, avec une prioritaire, 0 plus importante 15 moins importante
if (Timer == TIM2){
TIM2_Appel = Interrupt_fonc;
NVIC_EnableIRQ(TIM2_IRQn);
NVIC_SetPriority(TIM2_IRQn, Prio);
TIM2->DIER |= TIM_DIER_UIE; //Le registre DIER(Interrupt Enable Register) est mis au bit Update Interrupt, qui se commute lors d'un overflow
TIM2->CR1 |= TIM_CR1_CEN; //Clock Enable
}
}
//Fonction qui permet de clignoter le DEL à un pulse volue (Sinusoïdale)
//Si le sinus est haut(haute tension) le Duty Cicle est proche de 100%,
//si le sinus est bas (vers la tension la plus basse) le Duty Cycle est vers 0%
//On s'applique sur un plage de [0V; 3.3V]
void MyTimer_PWM(TIM_TypeDef * Timer , int Channel){
int pwrmd;
#if POWERMODE //Powermode 1
pwrmd = 0b110;
#else
pwrmd = 0b111; //Powermode 2
#endif
if (Channel == 1){
Timer->CCMR1 &= ~(0b111<<4); //On clear les trois bits qui sont de pwm
Timer->CCMR1 |= (pwrmd<<4); //On affecte le powermode au bits de lecture pour le µ-controlleur
Timer->CCMR1 |= TIM_CCMR1_OC1PE; //Update preload, il n'affecte pas le valeur avant que la prochaine cycle
Timer->CCER = TIM_CCER_CC1E; //Enable le pin voulu basculer
}
else if (Channel == 2){
Timer->CCMR1 &= ~(0b111<<12); //Le TIMx_CCMR1 configure deux channels, de bit [6:4] CH1, [14:12] CH2 (OC2M = Output Channel 2 )
Timer->CCMR1 |= (pwrmd<<12);
Timer->CCMR1 |= TIM_CCMR1_OC2PE;
Timer->CCER |= TIM_CCER_CC2E;
}
else if (Channel == 3){
Timer->CCMR1 &= ~(0b111<<4);
Timer->CCMR2 |= (pwrmd<<4);
Timer->CCMR2 |= TIM_CCMR2_OC3PE;
Timer->CCER |= TIM_CCER_CC3E;
}
else if (Channel == 4){
Timer->CCMR1 &= ~(0b111<<12);
Timer->CCMR2 |= (pwrmd<<12);
Timer->CCMR2 |= TIM_CCMR2_OC4PE;
Timer->CCER |= TIM_CCER_CC4E;
}
//En dessous d'ici, on a l'aide du plus gentil chat que je connais
// Enable auto-reload preload -- //Ensures that your initial configuration — PWM mode, duty cycle, period — actually takes effect before the timer starts counting.
Timer->CR1 |= TIM_CR1_ARPE;
// Force update event to load ARR and CCR values immediately
Timer->EGR |= TIM_EGR_UG;
// Start the timer
Timer->CR1 |= TIM_CR1_CEN;
switch (Channel) {
case 1:
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<0*4); GPIOA->CRH |= (0xA<<0*4); TIM1->BDTR |= 1<<15; }
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<0*4); GPIOA->CRL |= (0xA<<0*4);}
if (Timer == TIM3){GPIOA->CRL &= ~(0xF<<6*4); GPIOA->CRL |= (0xA<<6*4);}
if (Timer == TIM4){GPIOB->CRL &= ~(0xF<<5*4); GPIOB->CRL |= (0xA<<5*4);}
break;
case 2:
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<1*4); GPIOA->CRL |= (0xA<<1*4); TIM1->BDTR |= 1<<15;}
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<1*4); GPIOA->CRL |= (0xA<<1*4);}
if (Timer == TIM3){GPIOA->CRL &= ~(0xF<<7*4); GPIOA->CRL |= (0xA<<7*4);}
if (Timer == TIM4){GPIOB->CRL &= ~(0xF<<7*4); GPIOB->CRL |= (0xA<<7*4);}
break;
case 3:
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<2*4); GPIOA->CRH |= (0xA<<2*4); TIM1->BDTR |= 1<<15;}
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<2*4); GPIOA->CRL |= (0xA<<2*4);}
if (Timer == TIM3){GPIOB->CRL &= ~(0xF<<0*4); GPIOB->CRL |= (0xA<<0*4);}
if (Timer == TIM4){GPIOB->CRH &= ~(0xF<<0*4); GPIOB->CRH |= (0xA<<0*4);}
break;
case 4:
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<3*4); GPIOA->CRH |= (0xA<<3*4); TIM1->BDTR |= 1<<15;}
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<3*4); GPIOA->CRL |= (0xA<<3*4);}
if (Timer == TIM3){GPIOB->CRL &= ~(0xF<<1*4); GPIOB->CRL |= (0xA<<1*4);}
if (Timer == TIM4){GPIOB->CRH &= ~(0xF<<1*4); GPIOB->CRH |= (0xA<<1*4);}
}
}
//Une fonction qui met le bon PWM volue
int Set_DutyCycle_PWM(TIM_TypeDef *Timer, int Channel, int DutyC){
int CCR_VAL = (ARR_VAL + 1) * DutyC / 100; //ARR_VAL déjà definie
switch (Channel){
case 1: Timer->CCR1 = CCR_VAL;
case 2: Timer->CCR2 = CCR_VAL;
case 3: Timer->CCR3 = CCR_VAL;
case 4: Timer->CCR4 = CCR_VAL;
default: break;
}
return 0;
Timer->EGR |= TIM_EGR_UG;
}