136 lines
5.4 KiB
C
Executable file
136 lines
5.4 KiB
C
Executable file
#include <stm32f10x.h>
|
|
#include <stdio.h>
|
|
#include <Horloge.h>
|
|
|
|
|
|
//Il faut trouver le signal
|
|
//On est à Timer 2
|
|
|
|
static void (*TIM2_Appel)(void) = 0;
|
|
|
|
void Timer_Init(TIM_TypeDef *Timer, unsigned short Autoreload, unsigned short Prescaler){
|
|
if (Timer == TIM1) {
|
|
RCC->APB2ENR |= RCC_APB2ENR_TIM1EN; //L'horloge est enabléd
|
|
} else if (Timer == TIM2) {
|
|
TIM2->CR1 |= TIM_CR1_CEN; //On enable l'horloge interne
|
|
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
|
|
} else if (Timer == TIM3) {
|
|
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
|
|
} else if (Timer == TIM4) {
|
|
RCC->APB1ENR |= RCC_APB1ENR_TIM4EN;
|
|
}
|
|
Timer->ARR |= Autoreload;
|
|
Timer->PSC |= Prescaler;
|
|
}
|
|
|
|
//La fonction TIM2_IRQHandler s'utilise dans le processeur, on l'a juste redifint, tel qu'à chaque overflow on met un bit 1 dans GPIOA_ODR
|
|
void TIM2_IRQHandler(void) { //On redefinit le IRQHandler qui est déjà ecrit dans le code source
|
|
if (TIM2->SR & TIM_SR_UIF) { //On met le bit de overflow à un dès qu'on a overflow
|
|
TIM2->SR &= ~TIM_SR_UIF; //Remise à zero
|
|
|
|
if (TIM2_Appel){TIM2_Appel();}
|
|
}
|
|
}
|
|
|
|
|
|
void MyTimer_ActiveIT(TIM_TypeDef * Timer, char Prio, void(*Interrupt_fonc)(void)){ //On veut créer une fonction qui envoie un signal au cas où il y a debordement, avec une prioritaire, 0 plus importante 15 moins importante
|
|
if (Timer == TIM2){
|
|
|
|
TIM2_Appel = Interrupt_fonc;
|
|
|
|
NVIC_EnableIRQ(TIM2_IRQn);
|
|
NVIC_SetPriority(TIM2_IRQn, Prio);
|
|
TIM2->DIER |= TIM_DIER_UIE; //Le registre DIER(Interrupt Enable Register) est mis au bit Update Interrupt, qui se commute lors d'un overflow
|
|
TIM2->CR1 |= TIM_CR1_CEN; //Clock Enable
|
|
}
|
|
}
|
|
|
|
|
|
//Fonction qui permet de clignoter le DEL à un pulse volue (Sinusoïdale)
|
|
//Si le sinus est haut(haute tension) le Duty Cicle est proche de 100%,
|
|
//si le sinus est bas (vers la tension la plus basse) le Duty Cycle est vers 0%
|
|
//On s'applique sur un plage de [0V; 3.3V]
|
|
|
|
|
|
void MyTimer_PWM(TIM_TypeDef * Timer , int Channel){
|
|
int pwrmd;
|
|
#if POWERMODE //Powermode 1
|
|
pwrmd = 0b110;
|
|
#else
|
|
pwrmd = 0b111; //Powermode 2
|
|
#endif
|
|
|
|
if (Channel == 1){
|
|
Timer->CCMR1 &= ~(0b111<<4); //On clear les trois bits qui sont de pwm
|
|
Timer->CCMR1 |= (pwrmd<<4); //On affecte le powermode au bits de lecture pour le µ-controlleur
|
|
Timer->CCMR1 |= TIM_CCMR1_OC1PE; //Update preload, il n'affecte pas le valeur avant que la prochaine cycle
|
|
Timer->CCER = TIM_CCER_CC1E; //Enable le pin voulu basculer
|
|
}
|
|
else if (Channel == 2){
|
|
Timer->CCMR1 &= ~(0b111<<12); //Le TIMx_CCMR1 configure deux channels, de bit [6:4] CH1, [14:12] CH2 (OC2M = Output Channel 2 )
|
|
Timer->CCMR1 |= (pwrmd<<12);
|
|
Timer->CCMR1 |= TIM_CCMR1_OC2PE;
|
|
Timer->CCER |= TIM_CCER_CC2E;
|
|
}
|
|
else if (Channel == 3){
|
|
Timer->CCMR1 &= ~(0b111<<4);
|
|
Timer->CCMR2 |= (pwrmd<<4);
|
|
Timer->CCMR2 |= TIM_CCMR2_OC3PE;
|
|
Timer->CCER |= TIM_CCER_CC3E;
|
|
}
|
|
else if (Channel == 4){
|
|
Timer->CCMR1 &= ~(0b111<<12);
|
|
Timer->CCMR2 |= (pwrmd<<12);
|
|
Timer->CCMR2 |= TIM_CCMR2_OC4PE;
|
|
Timer->CCER |= TIM_CCER_CC4E;
|
|
}
|
|
|
|
//En dessous d'ici, on a l'aide du plus gentil chat que je connais
|
|
// Enable auto-reload preload -- //Ensures that your initial configuration — PWM mode, duty cycle, period — actually takes effect before the timer starts counting.
|
|
Timer->CR1 |= TIM_CR1_ARPE;
|
|
// Force update event to load ARR and CCR values immediately
|
|
Timer->EGR |= TIM_EGR_UG;
|
|
// Start the timer
|
|
Timer->CR1 |= TIM_CR1_CEN;
|
|
|
|
switch (Channel) {
|
|
case 1:
|
|
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<0*4); GPIOA->CRH |= (0xA<<0*4); TIM1->BDTR |= 1<<15; }
|
|
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<0*4); GPIOA->CRL |= (0xA<<0*4);}
|
|
if (Timer == TIM3){GPIOA->CRL &= ~(0xF<<6*4); GPIOA->CRL |= (0xA<<6*4);}
|
|
if (Timer == TIM4){GPIOB->CRL &= ~(0xF<<5*4); GPIOB->CRL |= (0xA<<5*4);}
|
|
break;
|
|
case 2:
|
|
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<1*4); GPIOA->CRL |= (0xA<<1*4); TIM1->BDTR |= 1<<15;}
|
|
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<1*4); GPIOA->CRL |= (0xA<<1*4);}
|
|
if (Timer == TIM3){GPIOA->CRL &= ~(0xF<<7*4); GPIOA->CRL |= (0xA<<7*4);}
|
|
if (Timer == TIM4){GPIOB->CRL &= ~(0xF<<7*4); GPIOB->CRL |= (0xA<<7*4);}
|
|
break;
|
|
case 3:
|
|
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<2*4); GPIOA->CRH |= (0xA<<2*4); TIM1->BDTR |= 1<<15;}
|
|
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<2*4); GPIOA->CRL |= (0xA<<2*4);}
|
|
if (Timer == TIM3){GPIOB->CRL &= ~(0xF<<0*4); GPIOB->CRL |= (0xA<<0*4);}
|
|
if (Timer == TIM4){GPIOB->CRH &= ~(0xF<<0*4); GPIOB->CRH |= (0xA<<0*4);}
|
|
break;
|
|
case 4:
|
|
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<3*4); GPIOA->CRH |= (0xA<<3*4); TIM1->BDTR |= 1<<15;}
|
|
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<3*4); GPIOA->CRL |= (0xA<<3*4);}
|
|
if (Timer == TIM3){GPIOB->CRL &= ~(0xF<<1*4); GPIOB->CRL |= (0xA<<1*4);}
|
|
if (Timer == TIM4){GPIOB->CRH &= ~(0xF<<1*4); GPIOB->CRH |= (0xA<<1*4);}
|
|
|
|
}
|
|
}
|
|
|
|
//Une fonction qui met le bon PWM volue
|
|
int Set_DutyCycle_PWM(TIM_TypeDef *Timer, int Channel, int DutyC){
|
|
int CCR_VAL = (ARR_VAL + 1) * DutyC / 100; //ARR_VAL déjà definie
|
|
switch (Channel){
|
|
case 1: Timer->CCR1 = CCR_VAL;
|
|
case 2: Timer->CCR2 = CCR_VAL;
|
|
case 3: Timer->CCR3 = CCR_VAL;
|
|
case 4: Timer->CCR4 = CCR_VAL;
|
|
default: break;
|
|
}
|
|
return 0;
|
|
Timer->EGR |= TIM_EGR_UG;
|
|
}
|