real_time/software/chargeur/Appli.c
Sébastien DI MERCURIO 776a2f4ce6 initial commit
2018-08-27 16:39:49 +02:00

536 lines
13 KiB
C

#include "stm32f10x.h" // Device header
#include <stdio.h>
volatile int32_t ITM_RxBuffer;
void SetLedOn(void);
void SetLedOff(void);
void RCC_Configuration(void);
void GetCurrentAndVoltage(uint32_t *current, uint32_t *voltage);
char VerifyVbatFastCharge(uint32_t voltage);
#define ADC1_DR_Address ((uint32_t)0x4001244C)
#define STATE_IDLE 0x0
#define STATE_FASTCHARGE 0x01
#define STATE_SLOWCHARGE 0x02
#define STATE_CHARGEFINISH 0x03
#define STATE_CALIBRATION 0x10
#define STATE_OFF 0xFF
#define MIN_RATIO 0
#define MAX_RATIO 400
#define CURRENT_FASTCHARGE 0x0C0
#define CURRENT_CHARGEFINISH 0x00C
#define VERSION "01A"
/* Remarque: Pont diviseur sur 1.5 V pour 9V batterie*/
#define VOLTAGE_IDLE 0x450 // 5V
#define VOLTAGE_FASTCHARGE 0x960 // 1.8*6 =>10.80
#define VOLTAGE_ABSOLUTEMAX 0xA10 // 12V
#define TEMPO_CHARGE_MAX 450*60 /* 45 minutes */
#define TEMPO_CHARGEFINISH_MAX 12 /* 1.2 seconds */
#define SAFETY_MAX 6
struct MESURE
{
uint16_t Current;
uint16_t Voltage;
};
__IO struct MESURE ADCConvertedValue[1024];
uint32_t state= STATE_IDLE;
__IO uint8_t tick=0;
uint32_t mesure_vbat;
uint32_t mesure_courant;
uint32_t mincurrent;
uint32_t delta_counter=0;
uint32_t ratio_pwm=0;
uint32_t tempo_chargefinish=0;
uint32_t tempo_charge=0;
uint8_t start=0;
uint8_t cause_exit=0;
uint8_t safety_counter=0;
uint32_t initial_vbat;
uint32_t volatile min_vbat, max_vbat;
void delay(uint32_t time)
{
volatile uint32_t counter = time;
while (counter!=0)
{
__nop();
counter--;
}
}
/**
* @brief Main function, that compute charge algorithms.
* @param None
* @retval None
*/
int main (void)
{
GPIO_InitTypeDef GPIO_InitStructure;
ADC_InitTypeDef ADC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_OCInitTypeDef TIM_OCInitStructure;
char count=0;
SysTick_Config(7200000);
RCC_Configuration();
/* PA8 -> Alternate function (TIM1_CH1) */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* PA1 -> Analog input (ADC1_CH1) -> V_Batterie
PA2 -> Analog input (ADC1_CH2) -> V_Courant
*/
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_2;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* PB12 -> Output Push Pull (Act Led) */
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
GPIO_Init(GPIOB, &GPIO_InitStructure);
/* ADC_IN1 = PA1 = Mesure_VBAT
ADC_IN2 = PA2 = Mesure_Courant
*/
/* DMA1 channel1 configuration ----------------------------------------------*/
DMA_DeInit(DMA1_Channel1);
DMA_InitStructure.DMA_PeripheralBaseAddr = ADC1_DR_Address;
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)&ADCConvertedValue;
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
DMA_InitStructure.DMA_BufferSize = 2*1024;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_HalfWord;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_HalfWord;
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
DMA_Init(DMA1_Channel1, &DMA_InitStructure);
/* Enable DMA1 channel1 */
DMA_Cmd(DMA1_Channel1, ENABLE);
/* ADC1 configuration ------------------------------------------------------*/
ADC_InitStructure.ADC_Mode = ADC_Mode_Independent;
ADC_InitStructure.ADC_ScanConvMode = ENABLE;
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;
ADC_InitStructure.ADC_NbrOfChannel = 2;
ADC_Init(ADC1, &ADC_InitStructure);
/* ADC1 regular channel14 configuration */
ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 1, ADC_SampleTime_55Cycles5);
ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_55Cycles5);
/* Enable ADC1 DMA */
ADC_DMACmd(ADC1, ENABLE);
/* Enable ADC1 */
ADC_Cmd(ADC1, ENABLE);
/* Enable ADC1 reset calibration register */
ADC_ResetCalibration(ADC1);
/* Check the end of ADC1 reset calibration register */
while(ADC_GetResetCalibrationStatus(ADC1));
/* Start ADC1 calibration */
ADC_StartCalibration(ADC1);
/* Check the end of ADC1 calibration */
while(ADC_GetCalibrationStatus(ADC1));
/* Start ADC1 Software Conversion */
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
/* TIM1_CH1+CH2 = PA8+PA9 = CMD_MOS */
/* Time base configuration */
TIM_TimeBaseStructure.TIM_Period = 512;
TIM_TimeBaseStructure.TIM_Prescaler = 0;
TIM_TimeBaseStructure.TIM_ClockDivision = 0;
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
TIM_TimeBaseInit(TIM1, &TIM_TimeBaseStructure);
/* PWM2 Mode configuration: Channel1 */
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM2;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Disable;
TIM_OCInitStructure.TIM_Pulse = ratio_pwm;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_Low;
TIM_OC1Init(TIM1, &TIM_OCInitStructure);
TIM_OC2Init(TIM1, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM1, TIM_OCPreload_Enable);
TIM_OC2PreloadConfig(TIM1, TIM_OCPreload_Enable);
TIM_ARRPreloadConfig(TIM1, ENABLE);
/* TIM1 enable counter */
TIM_Cmd(TIM1, ENABLE);
printf ("Let's start ...\n\r");
/* Wait x ms, in order for adc and DMA to acquire some data */
delay(1000000); // ~ 200 ms
GetCurrentAndVoltage(&mesure_courant, &initial_vbat);
min_vbat = (uint32_t)(initial_vbat*0.95);
max_vbat = (uint32_t)(initial_vbat*1.05);
while (1)
{
if (tick == 1)
{
tick=0;
count++;
GetCurrentAndVoltage(&mesure_courant, &mesure_vbat);
VerifyVbatFastCharge(mesure_vbat);
switch (state)
{
case STATE_IDLE:
if (mesure_vbat >= max_vbat) state = STATE_FASTCHARGE;
if (mesure_vbat <= min_vbat) state = STATE_FASTCHARGE;
if (mesure_courant !=0) state = STATE_FASTCHARGE;
tempo_chargefinish=0;
tempo_charge=0;
ratio_pwm = MIN_RATIO;
safety_counter=0;
mincurrent=0xFFFF;
delta_counter=0;
break;
case STATE_FASTCHARGE:
tempo_charge++;
if (mesure_vbat >= VOLTAGE_ABSOLUTEMAX) safety_counter++;
else safety_counter=0;
if ((safety_counter >= SAFETY_MAX) || (tempo_charge >= TEMPO_CHARGE_MAX))
{
ratio_pwm= MIN_RATIO;
TIM_SetCompare1(TIM1, (uint16_t)ratio_pwm);
state = STATE_CHARGEFINISH;
}
else
{
if (VerifyVbatFastCharge(mesure_vbat) !=0)
{
state = STATE_SLOWCHARGE;
}
else
{
if (mesure_courant>= CURRENT_FASTCHARGE)
{
if (ratio_pwm > MIN_RATIO) ratio_pwm--;
}
else
{
if (ratio_pwm< MAX_RATIO) ratio_pwm ++;
}
}
}
break;
case STATE_SLOWCHARGE:
tempo_charge++;
if (mesure_vbat >= VOLTAGE_ABSOLUTEMAX) safety_counter++;
else safety_counter=0;
if (mesure_courant == 0)
{
state = STATE_CHARGEFINISH;
ratio_pwm= MIN_RATIO;
TIM_SetCompare1(TIM1, (uint16_t)ratio_pwm);
}
if ((safety_counter >= SAFETY_MAX) || (tempo_charge >= TEMPO_CHARGE_MAX))
{
state = STATE_CHARGEFINISH;
ratio_pwm= MIN_RATIO;
TIM_SetCompare1(TIM1, (uint16_t)ratio_pwm);
if (mesure_vbat >= VOLTAGE_ABSOLUTEMAX) cause_exit=1;
else cause_exit=2;
}
else
{
if (mesure_courant<mincurrent) mincurrent=mesure_courant;
/* detection du delta */
if (mesure_courant>((uint32_t)((float)mincurrent*0.15))+mincurrent)
{
delta_counter++;
if (delta_counter ==25)
{
ratio_pwm= MIN_RATIO;
TIM_SetCompare1(TIM1, (uint16_t)ratio_pwm);
state = STATE_CHARGEFINISH;
cause_exit=3;
}
}
else delta_counter=0;
if (mesure_vbat >= VOLTAGE_FASTCHARGE)
{
if (ratio_pwm > MIN_RATIO) ratio_pwm--;
}
else
{
if (ratio_pwm< MAX_RATIO) ratio_pwm ++;
}
if (mesure_courant>= CURRENT_FASTCHARGE)
{
if (ratio_pwm > MIN_RATIO) ratio_pwm--;
}
if ((mesure_courant<= CURRENT_CHARGEFINISH) && (mesure_courant>=2))
{
ratio_pwm=MIN_RATIO;
TIM_SetCompare1(TIM1, (uint16_t)ratio_pwm);
state=STATE_CHARGEFINISH;
cause_exit=4;
}
}
break;
case STATE_CALIBRATION:
if (mesure_vbat >= VOLTAGE_FASTCHARGE)
{
if (ratio_pwm > MIN_RATIO) ratio_pwm--;
}
else
{
if (ratio_pwm< MAX_RATIO) ratio_pwm ++;
}
break;
case STATE_CHARGEFINISH:
default:
if (mesure_vbat<=VOLTAGE_IDLE)
{
tempo_chargefinish++;
if (tempo_chargefinish >= TEMPO_CHARGEFINISH_MAX) state=STATE_IDLE;
}
else tempo_chargefinish =0;
ratio_pwm = MIN_RATIO;
break;
}
TIM_SetCompare1(TIM1, (uint16_t)ratio_pwm);
if (count==10)
{
count=0;
printf("Vbat=0x%X, Icc=0x%X, pwm=%i, state=%i\n\r",mesure_vbat, mesure_courant, ratio_pwm, state);
}
}
}
#pragma diag_suppress 111
return 0;
}
/**
* @brief Compute mean values for current and voltage.
* @param current and voltage
* @retval None
*/
char VerifyVbatFastCharge(uint32_t voltage)
{
static uint32_t vbatarray[8];
int i;
uint32_t accumulator=0;
for (i=1; i<8; i++)
{
accumulator = accumulator + vbatarray[i];
vbatarray[i-1]=vbatarray[i];
}
vbatarray[7]=voltage;
accumulator = accumulator+voltage;
accumulator = accumulator>>3;
if(accumulator>=VOLTAGE_FASTCHARGE) return 1;
else return 0;
}
/**
* @brief Compute mean values for current and voltage.
* @param current and voltage
* @retval None
*/
void GetCurrentAndVoltage(uint32_t *current, uint32_t *voltage)
{
int i;
uint32_t current_loc=0;
uint32_t voltage_loc=0;
static char firsttime=0;
static uint32_t last_current=0;
static uint32_t last_voltage=0;
#define MINCURRENT 0x10
#define MAXCURRENT 0x2A
#define MINVOLTAGE 0xD0
#define MAXVOLTAGE 0x1D6
uint32_t currentmaxvar, voltagemaxvar;
for (i=0; i<1024; i++)
{
current_loc= ADCConvertedValue[i].Current;
voltage_loc= ADCConvertedValue[i].Voltage;
}
if (firsttime==0)
{
firsttime=1;
last_current = current_loc;
last_voltage = voltage_loc;
}
else
{
currentmaxvar=(uint32_t)((float)last_current*0.1);
voltagemaxvar=(uint32_t)((float)last_voltage*0.05);
if(currentmaxvar<MINCURRENT) currentmaxvar=MINCURRENT;
if(currentmaxvar>MAXCURRENT) currentmaxvar=MAXCURRENT;
if(voltagemaxvar<MINVOLTAGE) voltagemaxvar=MINVOLTAGE;
if(voltagemaxvar>MAXVOLTAGE) voltagemaxvar=MAXVOLTAGE;
if (current_loc>last_current)
{
if((current_loc-last_current)>currentmaxvar) current_loc = last_current+currentmaxvar;
}
else
{
if((last_current-current_loc)>currentmaxvar) current_loc = last_current-currentmaxvar;
}
if (voltage_loc>last_voltage)
{
if((voltage_loc-last_voltage)>voltagemaxvar) voltage_loc = last_voltage+voltagemaxvar;
}
else
{
if((last_voltage-voltage_loc)>voltagemaxvar) voltage_loc = last_voltage-voltagemaxvar;
}
last_current = current_loc;
last_voltage = voltage_loc;
}
*current=current_loc;
*voltage=voltage_loc;
}
/**
* @brief Configures the different system clocks.
* @param None
* @retval None
*/
void RCC_Configuration(void)
{
/* DMA clock enable */
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
/* GPIOA and GPIOB clock enable */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_ADC1 | RCC_APB2Periph_TIM1 |
RCC_APB2Periph_GPIOB | RCC_APB2Periph_AFIO, ENABLE);
}
void SysTick_Handler(void)
{
static int i=0;
static int flipflop=0;
i++;
tick=1;
if (i==10)
{
if (state==STATE_FASTCHARGE || state == STATE_SLOWCHARGE)
{
if (flipflop==0)
{
SetLedOn();
flipflop=1;
}
else
{
SetLedOff();
flipflop=0;
}
}
else if (state==STATE_CHARGEFINISH)
{
SetLedOn();
flipflop=0;
}
else
{
SetLedOff();
flipflop=0;
}
i=0;
}
}
void SetLedOn(void)
{
GPIO_SetBits(GPIOB, GPIO_Pin_12);
}
void SetLedOff(void)
{
GPIO_ResetBits(GPIOB, GPIO_Pin_12);
}