real_time/software/raspberry/superviseur-robot/lib/img.cpp
2018-12-21 16:36:52 +01:00

230 lines
7 KiB
C++

/*
* Copyright (C) 2018 dimercur
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "img.h"
bool Arene::empty() {
if ((this->arene.height==0) || (this->arene.width==0)) return true;
else return false;
}
Img::Img(ImageMat imgMatrice) {
this->img = imgMatrice.clone();
}
string Img::ToString() {
return "Image size: "+to_string(this->img.cols)+"x"+to_string(this->img.rows)+" (dim="+to_string(this->img.dims)+")";
}
string Img::ToBase64() {
return "";
}
Img* Img::Copy() {
return new Img(this->img);
}
float Img::calculAngle(Position robot) {
float a = robot.direction.x - robot.center.x;
float b = robot.direction.y - robot.center.y ;
float angle = atan2(b,a);
return angle * 180.f/M_PI;
}
float Img::calculAngle2(cv::Point2f pt1, cv::Point2f pt2) {
float a = pt1.x - pt2.x;
float b = pt1.y - pt2.y ;
float angle = atan2(b,a);
return angle * 180.f/M_PI;
}
#ifdef __WITH_ARUCO__
cv::Point2f Img::find_aruco_center(std::vector<cv::Point2f> aruco) {
return ((aruco[0] + aruco[2])/2);
}
cv::Point2f Img::find_aruco_direction(std::vector<cv::Point2f> aruco) {
return ((aruco[0]+aruco[1])/2);;
}
std::list<Position> Img::search_aruco(Arene monArene) {
ImageMat imgTraitment;
std::list<Position> positionList;
cv::Point2f areneCoor;
std::vector<int> ids;
std::vector<std::vector<cv::Point2f> > corners;
if(monArene.empty())
imgTraitment=this->img.clone();
else{
imgTraitment = cropArena(monArene);
areneCoor.x = monArene.x;
areneCoor.y = monArene.y;
}
cv::detectMarkers(imgTraitment,dictionary, corners, ids);
if(ids.size()>0){
for(int i = 0 ; i < ids.size() ; i++){
Position newPos;
newPos.center = find_aruco_center(corners[i]);
newPos.direction = find_aruco_direction(corners[i]);
newPos.robotId = ids[i];
if(!monArene.empty()){
newPos.direction += areneCoor;
newPos.center += areneCoor;
}
newPos.angle = calculAngle2(newPos.center, newPos.direction);
positionList.push_back(newPos);
}
}
return positionList;
}
#endif // __WITH_ARUCO__
float Img::euclideanDist(cv::Point2f p, cv::Point2f q) {
cv::Point diff = p - q;
return cv::sqrt(diff.x*diff.x + diff.y*diff.y);
}
Jpg Img::toJpg() {
Jpg imgJpg;
cv::imencode(".jpg",this->img,imgJpg);
return imgJpg;
}
//string Img::ToBase64() {
// string imgBase64;
// Jpg imgJpg = toJpg();
//
// /* faire la convertion Jpg vers base 64 */
// return imgBase64;
//}
std::list<Position> Img::search_robot(Arene monArene) {
std::list<Position> robotsFind;
std::vector<std::vector<cv::Point2f> > contours;
std::vector<cv::Point2f> approx;
std::vector<cv::Vec4i> hierarchy;
ImageMat imgTraitment;
if(monArene.empty())
imgTraitment=this->img.clone();
else
imgTraitment = cropArena(monArene);
cvtColor(imgTraitment,imgTraitment,CV_RGB2GRAY);
threshold(imgTraitment,imgTraitment,128,255,CV_THRESH_BINARY);
findContours(imgTraitment, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cv::Point2f(0, 0));
for(unsigned int i = 0;i < contours.size();i++)
{
cv::approxPolyDP(ImageMat(contours[i]), approx, cv::arcLength(ImageMat(contours[i]), true)*0.17, true);
if(approx.size() == 3 && fabs(cv::contourArea(contours[i])) > 200 && fabs(cv::contourArea(contours[i])) < 700)
{
cv::Point2f a,b,c;
cv::Point2f center;
a = approx[0];
b = approx[1];
c = approx[2];
if(!monArene.empty()) // ajout de l'offset de l'arène
{
a.x += monArene.arene.x;
a.y += monArene.arene.y;
b.x += monArene.arene.x;
b.y += monArene.arene.y;
c.x += monArene.arene.x;
c.y += monArene.arene.y;
}
center.x = (a.x + b.x + c.x)/3;
center.y = (a.y + b.y + c.y)/3;
Position newPos;
newPos.center=center;
if(euclideanDist(center,b) > euclideanDist(center,a) && euclideanDist(center,b) > euclideanDist(center,c) )
{
newPos.direction=b;
//line(img,center,b,Scalar(0,125,0),2,8,0);
}
else if(euclideanDist(center,a) > euclideanDist(center,c))
{
newPos.direction=a;
//line(img,center,a,Scalar(0,125,0),2,8,0);
}
else
{
newPos.direction=c;
//line(img,center,c,Scalar(0,125,0),2,8,0);
}
newPos.angle=calculAngle(newPos);
robotsFind.push_back(newPos);
}
}
return robotsFind;
}
Arene Img::search_arena() {
std::vector<std::vector<cv::Point> > contours;
std::vector<cv::Point> approx;
std::vector<cv::Vec4i> hierarchy;
ImageMat imageTrt;
cv::cvtColor(this->img,imageTrt,CV_RGB2GRAY); // conversion en niveau de gris
cv::threshold(imageTrt,imageTrt,128,255,CV_THRESH_BINARY); // Threshold les éléments les plus clair
cv::Canny(imageTrt, imageTrt, 100,200,3); // detection d'angle
findContours(imageTrt, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, cv::Point(0, 0));
for(unsigned int i = 0; i < contours.size();i++)
{
approxPolyDP(ImageMat(contours[i]), approx, cv::arcLength(ImageMat(contours[i]), true)*0.1, true);
if(approx.size()==4 && fabs(cv::contourArea(contours[i])) > 100000)
{
Arene rectangle;
rectangle.arene = cv::boundingRect(ImageMat(contours[i]));
return rectangle;
}
}
return Arene();
}
int Img::draw_robot(Position robot) {
cv::arrowedLine(this->img, (cv::Point2f)robot.center, (cv::Point2f)robot.direction, cv::Scalar(0,0,255),3,8,0);
return 0;
}
int Img::draw_all_robots(std::list<Position> robots) {
for(Position robot : robots){
cv::arrowedLine(this->img, (cv::Point2f)robot.center, (cv::Point2f)robot.direction, cv::Scalar(0,0,255),3,8,0);
}
return robots.size();
}
int Img::draw_arena(Arene areneToDraw) {
cv::rectangle(this->img,areneToDraw.arene.tl(),areneToDraw.arene.br(),cv::Scalar(0,0,125),2,8,0);
return 0;
}
ImageMat Img::cropArena(Arene arene) {
return this->img(arene.arene);
}