Projet Final, config DFT, Son, Affichage en cours

This commit is contained in:
Jules-Ian Barnavon 2023-04-21 18:12:43 +02:00
parent db304375f0
commit 0ac25435cd
18 changed files with 8900 additions and 0 deletions

BIN
ModuleAffichage.zip Normal file

Binary file not shown.

View file

@ -0,0 +1,345 @@
/**
* Bibliotheque DriverJeuLaser (ancienne gassp72 adaptée 2021 - TR)
*
* GPIO - ADC - Sequenceur - System Timer - PWM - 72 MHz
* Modifs :
* enlèvement de tout ce qui est inutile dans le .h
* ajout de fonctions GPIO dans le .c pour utilisation en ASM ou en C :
* - GPIOA_Set(char Broche), GPIOB_Set(char Broche), GPIOC_Set(char Broche)
* - GPIOA_Clear(char Broche), GPIOB_Clear(char Broche), GPIOC_Clear(char Broche)
*
* ajout d'une fonction qui impose une valeur de PWM (TIM3_CCR3)
* PWM_Set_Value_On_TIM3_C3( int Val)
* permet en ASM ou en C de fixer la valeur de PWM
* Ajout de commentaires
*/
#ifndef DRIVERJEULASER_H__
#define DRIVERJEULASER_H__
#include "stm32f10x.h"
//**********************************************************************************************************
//--------------------- CONFIGURATION CLOCK DU STM32 --------------------------------------
//**********************************************************************************************************
/**
* @brief Configure l'ensemble des horloges du uC
* @note horloge systeme (config statique a 72 MHz pour le STM32F103)
* @param None
* @retval None
*/
void CLOCK_Configure(void);
//**********************************************************************************************************
//--------------------- LES TIMERS GENERAL PURPOSE TIM1 à TIM 4 ------------------------------
//**********************************************************************************************************
/**
* @brief Configure un Timer TIM1 à TIM4 avec une périodicité donnée
* @note L' horloge des 4 timers a une fréquence de 72MHz
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param Durée_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
void Timer_1234_Init_ff( TIM_TypeDef *Timer, u32 Duree_ticks );
/**
* Macros de base pour utiliser les timers
*/
// bloque le timer
#define Bloque_Timer(Timer) Timer->CR1=(Timer->CR1)&~(1<<0)
// Lance timer
#define Run_Timer(Timer) Timer->CR1=(Timer->CR1)|(1<<0)
/**
* @brief Associe une fonction d'interruption (callback) lors du débordement d'un timer
* @note
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param Prio : niveau de priorité de l'interruption (0 -> priorité max, 15 -> priorité min)
* @param IT_function : le nom de la fonction Callback à appeler lors de l'interruption
* @retval None
*/
void Active_IT_Debordement_Timer( TIM_TypeDef *Timer, char Prio, void (*IT_function)(void) );
//*********************************************************************************************************
//--------------------- PWM TIM1 to TIM 4 ------------------------------
//*********************************************************************************************************
/**
* @brief Configure un timer en PWM
* @note
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param voie : un des 4 canaux possibles 1 à 4.
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval Retourne la période en tick (normalement la même que le param d'entrée sauf si PSC utilisé
*/
unsigned short int PWM_Init_ff( TIM_TypeDef *Timer, char Voie, u32 Periode_ticks );
/**
* @brief Fixe une valeur de PWM, Val, en tick horloge. La rapport cyclique effectif
* est donc : rcy = Thaut_ticks / Periode_ticks
* @note spécifique Jeu Laser, PWM liée exclusivement au TIM3, chan3
* @param Thaut_ticks : durée de l'état haut d'une impulsion en Ticks
* @retval None
*/
void PWM_Set_Value_TIM3_Ch3( unsigned short int Thaut_ticks);
//**********************************************************************************************************
//--------------------- LE SYSTICK TIMER, Part of Cortex M3 ------------------------------
//**********************************************************************************************************
/**
* @brief Configure le timer Systick avec une périodicité donnée
* @note Ce timer ne peut servir qu'à créer des temporisations ou générer des interruption
* ce n'est pas à proprement parler un périphérique, il fait partie du Cortex M3
* Ce timer est un 24 bits
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour établir la périodicité
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
void Systick_Period_ff( unsigned int Periode_ticks );
/**
* @brief Associe une fonction d'interruption (callback) lors du débordement du Systick
* @note
* @param Prio : niveau de priorité de l'interruption (0 -> priorité max, 15 -> priorité min)
* @param IT_function : le nom de la fonction Callback à appeler lors de l'interruption
* @retval None
*/
void Systick_Prio_IT( char Prio, void (*Systick_function)(void) );
/**
* Macros de base pour utiliser le Systick
*/
#define SysTick_On ((SysTick->CTRL)=(SysTick->CTRL)|1<<0)
#define SysTick_Off ((SysTick->CTRL)=(SysTick->CTRL)& ~(1<<0))
#define SysTick_Enable_IT ((SysTick->CTRL)=(SysTick->CTRL)|1<<1)
#define SysTick_Disable_IT ((SysTick->CTRL)=(SysTick->CTRL)& ~(1<<1))
//**********************************************************************************************************
//--------------------- LE SYSTICK TIMER, Part of Cortex M3 ------------------------------
//**********************************************************************************************************
/**
* @brief Active l'ADC du STM32, configure la durée de prélèvement de l'échantillon (temps
* de fermeture du switch d'acquisition
* @note
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Duree_Ech_ticks : dirée de fermeture du switch d'échantillonnage en Tick d'horloge CPU
* exemple pour 1µs on choisira 72.
* @retval Nombre de Tick réellement pris en compte
*/
unsigned int Init_TimingADC_ActiveADC_ff( ADC_TypeDef * ADC, u32 Duree_Ech_ticks );
/**
* @brief Sélectionne la voie à convertir
* @note Attention, la voie va de 0 à 15 et n'est pas directement lié au n°de GPIO
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Voie_ADC : 1 à 15
* @retval None
*/
void Single_Channel_ADC( ADC_TypeDef * ADC, char Voie_ADC );
/**
* @brief Permet lier le déclenchement au débordement d'un timer, spécifie également
* la période de débordement du timer
* @note pas besoin de régler le timer avec une autre fonction dédiée timer
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Source : indique le timer qui déclenche l'ADC choix dans les define ci-dessous
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
// param pour Source :
#define TIM1_CC1 0
#define TIM1_CC2 1
#define TIM1_CC3 2
#define TIM2_CC2 3
#define TIM4_CC4 5
void Init_Conversion_On_Trig_Timer_ff( ADC_TypeDef * ADC, char Source, u32 Periode_ticks );
//**********************************************************************************************************
//--------------------- ANALOG INPUT ADC & DMA ------------------------------
//**********************************************************************************************************
/**
* @brief Permer de lier l'ADC à un tableau en RAM pour une DMA
* @note
* @param Circ : circular. Si '0', en fin de DMA le ptr d'@ reste inchangé
* si '1' le ptr d'@ se recale à celle du début.
* @param Ptr_Table_DMA : contient l'@ de début de zone RAM à écrire
* @retval None
*/
void Init_ADC1_DMA1(char Circ, short int *Ptr_Table_DMA);
/**
* @brief Lance une DMA sur le nombre de points spécifie. Les resultats seront stockes
* dans la zone de RAM écrite est indiquée lors de l'appel de la fonction Init_ADC1_DMA1
* @note
* @param NbEchDMA est le nombre d'échantillons à stocker.
* @retval None
*/
void Start_DMA1( u16 NbEchDMA );
// arret DMA
#define Stop_DMA1 DMA1_Channel1->CCR =(DMA1_Channel1->CCR) &~0x1;
/**
* @brief Attend la fin d'un cycle de DMA. la duree depend de la periode d'acquisition
* et du nombre d'echantillons
* @note fonction d'attente (bloquante)
* @param None
* @retval None
*/
void Wait_On_End_Of_DMA1(void);
//**********************************************************************************************************
//--------------------- GPIO ------------------------------
//**********************************************************************************************************
/**
* @brief Initialisation d'un GPIO (A à C), pin x.
* peut être configuré :
* -> Input ou output
* -> architecture technologique (push-pull, open drain...)
* @note
* @param Port : GPIOA, GPIOB, GPIOC
* @param Broche : 0 à 15
* @param Sens : INPUT ou OUTPUT
* @param Techno : voir define ci dessous
* @retval 1 erreur, 0 si OK
*/
// Sens
#define INPUT 'i'
#define OUTPUT 'o'
// Techno pour pin en entrée (INPUT)
#define ANALOG 0
#define INPUT_FLOATING 1
#define INPUT_PULL_DOWN_UP 2
// Techno pour pin en sortie (OUTPUT)
#define OUTPUT_PPULL 0
#define OUTPUT_OPDRAIN 1
#define ALT_PPULL 2
#define ALT_OPDRAIN 3
// Exemple :
// Port_IO_Init(GPIOB, 8, OUTPUT, OUTPUT_PPULL);
// Place le bit 8 du port B en sortie Push-pull
char GPIO_Configure(GPIO_TypeDef * Port, int Broche, int Sens, int Techno);
/**
* @brief Mise à 1 d'une broche GPIO
* @note Une fonction par GPIO
* @param Broche : 0 à 15
* @retval None
*/
void GPIOA_Set(char Broche);
void GPIOB_Set(char Broche);
void GPIOC_Set(char Broche);
/**
* @brief Mise à 0 d'une broche GPIO
* @note Une fonction par GPIO
* @param Broche : 0 à 15
* @retval None
*/
void GPIOA_Clear(char Broche);
void GPIOB_Clear(char Broche);
void GPIOC_Clear(char Broche);
#endif

View file

@ -0,0 +1,56 @@
; Bibliotheque DriverJeuLaser (ancienne gassp72 adaptée 2021 - TR)
; Accès en aux fonctions suivantes :
; GPIO :
; GPIOA_Set(char Broche), GPIOB_Set(char Broche), GPIOC_Set(char Broche)
; GPIOA_Clear(char Broche), GPIOB_Clear(char Broche), GPIOC_Clear(char Broche)
; PWM :
;/**
; * @brief Fixe une valeur de PWM, Val, en tick horloge. La rapport cyclique effectif
; * est donc : rcy = Thaut_ticks / Periode_ticks
; * @note spécifique Jeu Laser, PWM liée exclusivement au TIM3, chan3
; * @param Thaut_ticks : durée de l'état haut d'une impulsion en Ticks
; * @retval None
; */
;void PWM_Set_Value_TIM3_Ch3( unsigned short int Thaut_ticks);
import PWM_Set_Value_TIM3_Ch3
;/**
; * @brief Mise à 1 d'une broche GPIO
; * @note Une fonction par GPIO
; * @param Broche : 0 à 15
; * @retval None
; */
;void GPIOA_Set(char Broche);
import GPIOA_Set
;void GPIOB_Set(char Broche);
import GPIOB_Set
;void GPIOC_Set(char Broche);
import GPIOC_Set
;/**
; * @brief Mise à 0 d'une broche GPIO
; * @note Une fonction par GPIO
; * @param Broche : 0 à 15
; * @retval None
; */
;void GPIOA_Clear(char Broche);
import GPIOA_Clear
;void GPIOB_Clear(char Broche);
import GPIOB_Clear
;void GPIOC_Clear(char Broche);
import GPIOC_Clear
end

View file

@ -0,0 +1,345 @@
/**
* Bibliotheque DriverJeuLaser (ancienne gassp72 adaptée 2021 - TR)
*
* GPIO - ADC - Sequenceur - System Timer - PWM - 72 MHz
* Modifs :
* enlèvement de tout ce qui est inutile dans le .h
* ajout de fonctions GPIO dans le .c pour utilisation en ASM ou en C :
* - GPIOA_Set(char Broche), GPIOB_Set(char Broche), GPIOC_Set(char Broche)
* - GPIOA_Clear(char Broche), GPIOB_Clear(char Broche), GPIOC_Clear(char Broche)
*
* ajout d'une fonction qui impose une valeur de PWM (TIM3_CCR3)
* PWM_Set_Value_On_TIM3_C3( int Val)
* permet en ASM ou en C de fixer la valeur de PWM
* Ajout de commentaires
*/
#ifndef DRIVERJEULASER_H__
#define DRIVERJEULASER_H__
#include "stm32f10x.h"
//**********************************************************************************************************
//--------------------- CONFIGURATION CLOCK DU STM32 --------------------------------------
//**********************************************************************************************************
/**
* @brief Configure l'ensemble des horloges du uC
* @note horloge systeme (config statique a 72 MHz pour le STM32F103)
* @param None
* @retval None
*/
void CLOCK_Configure(void);
//**********************************************************************************************************
//--------------------- LES TIMERS GENERAL PURPOSE TIM1 à TIM 4 ------------------------------
//**********************************************************************************************************
/**
* @brief Configure un Timer TIM1 à TIM4 avec une périodicité donnée
* @note L' horloge des 4 timers a une fréquence de 72MHz
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param Durée_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
void Timer_1234_Init_ff( TIM_TypeDef *Timer, u32 Duree_ticks );
/**
* Macros de base pour utiliser les timers
*/
// bloque le timer
#define Bloque_Timer(Timer) Timer->CR1=(Timer->CR1)&~(1<<0)
// Lance timer
#define Run_Timer(Timer) Timer->CR1=(Timer->CR1)|(1<<0)
/**
* @brief Associe une fonction d'interruption (callback) lors du débordement d'un timer
* @note
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param Prio : niveau de priorité de l'interruption (0 -> priorité max, 15 -> priorité min)
* @param IT_function : le nom de la fonction Callback à appeler lors de l'interruption
* @retval None
*/
void Active_IT_Debordement_Timer( TIM_TypeDef *Timer, char Prio, void (*IT_function)(void) );
//*********************************************************************************************************
//--------------------- PWM TIM1 to TIM 4 ------------------------------
//*********************************************************************************************************
/**
* @brief Configure un timer en PWM
* @note
* @param *Timer = TIM1 ou TIM2 ou TIM3 ou TIM4
* @param voie : un des 4 canaux possibles 1 à 4.
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval Retourne la période en tick (normalement la même que le param d'entrée sauf si PSC utilisé
*/
unsigned short int PWM_Init_ff( TIM_TypeDef *Timer, char Voie, u32 Periode_ticks );
/**
* @brief Fixe une valeur de PWM, Val, en tick horloge. La rapport cyclique effectif
* est donc : rcy = Thaut_ticks / Periode_ticks
* @note spécifique Jeu Laser, PWM liée exclusivement au TIM3, chan3
* @param Thaut_ticks : durée de l'état haut d'une impulsion en Ticks
* @retval None
*/
void PWM_Set_Value_TIM3_Ch3( unsigned short int Thaut_ticks);
//**********************************************************************************************************
//--------------------- LE SYSTICK TIMER, Part of Cortex M3 ------------------------------
//**********************************************************************************************************
/**
* @brief Configure le timer Systick avec une périodicité donnée
* @note Ce timer ne peut servir qu'à créer des temporisations ou générer des interruption
* ce n'est pas à proprement parler un périphérique, il fait partie du Cortex M3
* Ce timer est un 24 bits
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour établir la périodicité
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
void Systick_Period_ff( unsigned int Periode_ticks );
/**
* @brief Associe une fonction d'interruption (callback) lors du débordement du Systick
* @note
* @param Prio : niveau de priorité de l'interruption (0 -> priorité max, 15 -> priorité min)
* @param IT_function : le nom de la fonction Callback à appeler lors de l'interruption
* @retval None
*/
void Systick_Prio_IT( char Prio, void (*Systick_function)(void) );
/**
* Macros de base pour utiliser le Systick
*/
#define SysTick_On ((SysTick->CTRL)=(SysTick->CTRL)|1<<0)
#define SysTick_Off ((SysTick->CTRL)=(SysTick->CTRL)& ~(1<<0))
#define SysTick_Enable_IT ((SysTick->CTRL)=(SysTick->CTRL)|1<<1)
#define SysTick_Disable_IT ((SysTick->CTRL)=(SysTick->CTRL)& ~(1<<1))
//**********************************************************************************************************
//--------------------- LE SYSTICK TIMER, Part of Cortex M3 ------------------------------
//**********************************************************************************************************
/**
* @brief Active l'ADC du STM32, configure la durée de prélèvement de l'échantillon (temps
* de fermeture du switch d'acquisition
* @note
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Duree_Ech_ticks : dirée de fermeture du switch d'échantillonnage en Tick d'horloge CPU
* exemple pour 1µs on choisira 72.
* @retval Nombre de Tick réellement pris en compte
*/
unsigned int Init_TimingADC_ActiveADC_ff( ADC_TypeDef * ADC, u32 Duree_Ech_ticks );
/**
* @brief Sélectionne la voie à convertir
* @note Attention, la voie va de 0 à 15 et n'est pas directement lié au n°de GPIO
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Voie_ADC : 1 à 15
* @retval None
*/
void Single_Channel_ADC( ADC_TypeDef * ADC, char Voie_ADC );
/**
* @brief Permet lier le déclenchement au débordement d'un timer, spécifie également
* la période de débordement du timer
* @note pas besoin de régler le timer avec une autre fonction dédiée timer
* @param ADC : précise de quel ADC il s'agit, ADC1 ou ADC2
* @param Source : indique le timer qui déclenche l'ADC choix dans les define ci-dessous
* @param Periode_ticks : nombre de pas (tick) comptés à 72 MHz pour faire déborder le timer
* La période de débordement du Timer est donc T = Durée_ticks * Tck, avec Tck = 1/72 000 000
* @retval None
*/
// param pour Source :
#define TIM1_CC1 0
#define TIM1_CC2 1
#define TIM1_CC3 2
#define TIM2_CC2 3
#define TIM4_CC4 5
void Init_Conversion_On_Trig_Timer_ff( ADC_TypeDef * ADC, char Source, u32 Periode_ticks );
//**********************************************************************************************************
//--------------------- ANALOG INPUT ADC & DMA ------------------------------
//**********************************************************************************************************
/**
* @brief Permer de lier l'ADC à un tableau en RAM pour une DMA
* @note
* @param Circ : circular. Si '0', en fin de DMA le ptr d'@ reste inchangé
* si '1' le ptr d'@ se recale à celle du début.
* @param Ptr_Table_DMA : contient l'@ de début de zone RAM à écrire
* @retval None
*/
void Init_ADC1_DMA1(char Circ, short int *Ptr_Table_DMA);
/**
* @brief Lance une DMA sur le nombre de points spécifie. Les resultats seront stockes
* dans la zone de RAM écrite est indiquée lors de l'appel de la fonction Init_ADC1_DMA1
* @note
* @param NbEchDMA est le nombre d'échantillons à stocker.
* @retval None
*/
void Start_DMA1( u16 NbEchDMA );
// arret DMA
#define Stop_DMA1 DMA1_Channel1->CCR =(DMA1_Channel1->CCR) &~0x1;
/**
* @brief Attend la fin d'un cycle de DMA. la duree depend de la periode d'acquisition
* et du nombre d'echantillons
* @note fonction d'attente (bloquante)
* @param None
* @retval None
*/
void Wait_On_End_Of_DMA1(void);
//**********************************************************************************************************
//--------------------- GPIO ------------------------------
//**********************************************************************************************************
/**
* @brief Initialisation d'un GPIO (A à C), pin x.
* peut être configuré :
* -> Input ou output
* -> architecture technologique (push-pull, open drain...)
* @note
* @param Port : GPIOA, GPIOB, GPIOC
* @param Broche : 0 à 15
* @param Sens : INPUT ou OUTPUT
* @param Techno : voir define ci dessous
* @retval 1 erreur, 0 si OK
*/
// Sens
#define INPUT 'i'
#define OUTPUT 'o'
// Techno pour pin en entrée (INPUT)
#define ANALOG 0
#define INPUT_FLOATING 1
#define INPUT_PULL_DOWN_UP 2
// Techno pour pin en sortie (OUTPUT)
#define OUTPUT_PPULL 0
#define OUTPUT_OPDRAIN 1
#define ALT_PPULL 2
#define ALT_OPDRAIN 3
// Exemple :
// Port_IO_Init(GPIOB, 8, OUTPUT, OUTPUT_PPULL);
// Place le bit 8 du port B en sortie Push-pull
char GPIO_Configure(GPIO_TypeDef * Port, int Broche, int Sens, int Techno);
/**
* @brief Mise à 1 d'une broche GPIO
* @note Une fonction par GPIO
* @param Broche : 0 à 15
* @retval None
*/
void GPIOA_Set(char Broche);
void GPIOB_Set(char Broche);
void GPIOC_Set(char Broche);
/**
* @brief Mise à 0 d'une broche GPIO
* @note Une fonction par GPIO
* @param Broche : 0 à 15
* @retval None
*/
void GPIOA_Clear(char Broche);
void GPIOB_Clear(char Broche);
void GPIOC_Clear(char Broche);
#endif

View file

@ -0,0 +1,56 @@
; Bibliotheque DriverJeuLaser (ancienne gassp72 adaptée 2021 - TR)
; Accès en aux fonctions suivantes :
; GPIO :
; GPIOA_Set(char Broche), GPIOB_Set(char Broche), GPIOC_Set(char Broche)
; GPIOA_Clear(char Broche), GPIOB_Clear(char Broche), GPIOC_Clear(char Broche)
; PWM :
;/**
; * @brief Fixe une valeur de PWM, Val, en tick horloge. La rapport cyclique effectif
; * est donc : rcy = Thaut_ticks / Periode_ticks
; * @note spécifique Jeu Laser, PWM liée exclusivement au TIM3, chan3
; * @param Thaut_ticks : durée de l'état haut d'une impulsion en Ticks
; * @retval None
; */
;void PWM_Set_Value_TIM3_Ch3( unsigned short int Thaut_ticks);
import PWM_Set_Value_TIM3_Ch3
;/**
; * @brief Mise à 1 d'une broche GPIO
; * @note Une fonction par GPIO
; * @param Broche : 0 à 15
; * @retval None
; */
;void GPIOA_Set(char Broche);
import GPIOA_Set
;void GPIOB_Set(char Broche);
import GPIOB_Set
;void GPIOC_Set(char Broche);
import GPIOC_Set
;/**
; * @brief Mise à 0 d'une broche GPIO
; * @note Une fonction par GPIO
; * @param Broche : 0 à 15
; * @retval None
; */
;void GPIOA_Clear(char Broche);
import GPIOA_Clear
;void GPIOB_Clear(char Broche);
import GPIOB_Clear
;void GPIOC_Clear(char Broche);
import GPIOC_Clear
end

View file

@ -0,0 +1,78 @@
/* Fichier devant contenir l'ensemble de fichiers utiles pour le projet LaserQuest
et qui concenent l'affichage sur la valise */
/* mais non disponible en version source pour les étudiants. */
#ifndef _AFFICHAGE_VALISE_H__
#define _AFFICHAGE_VALISE_H__
#include "stm32f10x.h"
/**
* @brief Initialise les périphériques nécessaires à l'affichage sur la Mallette
* et gère la cible active. S'utilise aussi avec les ùmodules affichages simple (pas de mallette)
* @note Utilise TIM1, PA5, PA6 pour les cibles, PC7 à PC9 pour SPI émulé
* utilise aussi une interruption sut TIM1, prio 8.
* @param none
* @retval None
*/
void Init_Affichage(void);
/**
* @brief Prépare l'affichage 2 digit sur l'afficheur demandé
* @note Exemple : Prepare_Afficheur(2, 99);
* prépare l'affichage de la valeur 99 sur l'afficheur n°2
* L'action est différée à l'exécution de Mise_A_Jour_Afficheurs_LED()
* @param char Aff : de 1 à 4 ; char Valeur de 0 à 99
* @retval None
*/
void Prepare_Afficheur(char Aff, char Valeur);
void Prepare_Set_Point_Unite(char Aff);
void Prepare_Clear_Point_Unite(char Aff);
/**
* @brief Prépare l'allumage de la LED demandée
* @note Exemple : Prepare_Set_LED(LED_Cible_2);
* prépare l'allumage de la LED correspondant à la cible n°2
* L'action est différée à l'exécution de Mise_A_Jour_Afficheurs_LED()
* @param voir #define ci-dessous
* @retval None
*/
void Prepare_Set_LED(char LED);
void Prepare_Clear_LED(char LED);
/**
* @brief Effectue l'action d'écriture dans le module d'affichage
* à partir de tout ce qui a é préparé auparavant.
* @note
* @param None
* @retval None
*/
void Mise_A_Jour_Afficheurs_LED(void);
/**
* @brief Spécifie le capteut actif, à savoir celui effectivement relié
* aux sorties disponibles sur la malette
* @note Exemple : Choix_Capteur(1)
* @param 1 à 4
* @retval None
*/
void Choix_Capteur(char Capteur);
// define utile pour la fonction Prepare_Set_LED et Prepare_Clear_LED
#define LED_LCD_R 5
#define LED_LCD_V 4
#define LED_Cible_4 3
#define LED_Cible_3 2
#define LED_Cible_2 1
#define LED_Cible_1 0
#endif

View file

@ -0,0 +1,68 @@
AREA Signal, DATA, READONLY
export LeSignal
LeSignal
DCW 0x0fff ; 0 4095 0.99976
DCW 0x0737 ; 1 1847 0.45093
DCW 0x0027 ; 2 39 0.00952
DCW 0x0a53 ; 3 2643 0.64526
DCW 0x0f64 ; 4 3940 0.96191
DCW 0x043b ; 5 1083 0.26440
DCW 0x0159 ; 6 345 0.08423
DCW 0x0d13 ; 7 3347 0.81714
DCW 0x0da8 ; 8 3496 0.85352
DCW 0x01d1 ; 9 465 0.11353
DCW 0x038e ; 10 910 0.22217
DCW 0x0f0e ; 11 3854 0.94092
DCW 0x0b10 ; 12 2832 0.69141
DCW 0x0058 ; 13 88 0.02148
DCW 0x0670 ; 14 1648 0.40234
DCW 0x0ff6 ; 15 4086 0.99756
DCW 0x0800 ; 16 2048 0.50000
DCW 0x000a ; 17 10 0.00244
DCW 0x0990 ; 18 2448 0.59766
DCW 0x0fa8 ; 19 4008 0.97852
DCW 0x04f0 ; 20 1264 0.30859
DCW 0x00f2 ; 21 242 0.05908
DCW 0x0c72 ; 22 3186 0.77783
DCW 0x0e2f ; 23 3631 0.88647
DCW 0x0258 ; 24 600 0.14648
DCW 0x02ed ; 25 749 0.18286
DCW 0x0ea7 ; 26 3751 0.91577
DCW 0x0bc5 ; 27 3013 0.73560
DCW 0x009c ; 28 156 0.03809
DCW 0x05ad ; 29 1453 0.35474
DCW 0x0fd9 ; 30 4057 0.99048
DCW 0x08c9 ; 31 2249 0.54907
DCW 0x0000 ; 32 0 0.00000
DCW 0x08c9 ; 33 2249 0.54907
DCW 0x0fd9 ; 34 4057 0.99048
DCW 0x05ad ; 35 1453 0.35474
DCW 0x009c ; 36 156 0.03809
DCW 0x0bc5 ; 37 3013 0.73560
DCW 0x0ea7 ; 38 3751 0.91577
DCW 0x02ed ; 39 749 0.18286
DCW 0x0258 ; 40 600 0.14648
DCW 0x0e2f ; 41 3631 0.88647
DCW 0x0c72 ; 42 3186 0.77783
DCW 0x00f2 ; 43 242 0.05908
DCW 0x04f0 ; 44 1264 0.30859
DCW 0x0fa8 ; 45 4008 0.97852
DCW 0x0990 ; 46 2448 0.59766
DCW 0x000a ; 47 10 0.00244
DCW 0x0800 ; 48 2048 0.50000
DCW 0x0ff6 ; 49 4086 0.99756
DCW 0x0670 ; 50 1648 0.40234
DCW 0x0058 ; 51 88 0.02148
DCW 0x0b10 ; 52 2832 0.69141
DCW 0x0f0e ; 53 3854 0.94092
DCW 0x038e ; 54 910 0.22217
DCW 0x01d1 ; 55 465 0.11353
DCW 0x0da8 ; 56 3496 0.85352
DCW 0x0d13 ; 57 3347 0.81714
DCW 0x0159 ; 58 345 0.08423
DCW 0x043b ; 59 1083 0.26440
DCW 0x0f64 ; 60 3940 0.96191
DCW 0x0a53 ; 61 2643 0.64526
DCW 0x0027 ; 62 39 0.00952
DCW 0x0737 ; 63 1847 0.45093
END

View file

@ -0,0 +1,68 @@
AREA Signal, DATA, READONLY
export LeSignal
LeSignal
DCW 0x0fff ; 0 4095 0.99976
DCW 0x0ff6 ; 1 4086 0.99756
DCW 0x0fd9 ; 2 4057 0.99048
DCW 0x0fa8 ; 3 4008 0.97852
DCW 0x0f64 ; 4 3940 0.96191
DCW 0x0f0e ; 5 3854 0.94092
DCW 0x0ea7 ; 6 3751 0.91577
DCW 0x0e2f ; 7 3631 0.88647
DCW 0x0da8 ; 8 3496 0.85352
DCW 0x0d13 ; 9 3347 0.81714
DCW 0x0c72 ; 10 3186 0.77783
DCW 0x0bc5 ; 11 3013 0.73560
DCW 0x0b10 ; 12 2832 0.69141
DCW 0x0a53 ; 13 2643 0.64526
DCW 0x0990 ; 14 2448 0.59766
DCW 0x08c9 ; 15 2249 0.54907
DCW 0x0800 ; 16 2048 0.50000
DCW 0x0737 ; 17 1847 0.45093
DCW 0x0670 ; 18 1648 0.40234
DCW 0x05ad ; 19 1453 0.35474
DCW 0x04f0 ; 20 1264 0.30859
DCW 0x043b ; 21 1083 0.26440
DCW 0x038e ; 22 910 0.22217
DCW 0x02ed ; 23 749 0.18286
DCW 0x0258 ; 24 600 0.14648
DCW 0x01d1 ; 25 465 0.11353
DCW 0x0159 ; 26 345 0.08423
DCW 0x00f2 ; 27 242 0.05908
DCW 0x009c ; 28 156 0.03809
DCW 0x0058 ; 29 88 0.02148
DCW 0x0027 ; 30 39 0.00952
DCW 0x000a ; 31 10 0.00244
DCW 0x0000 ; 32 0 0.00000
DCW 0x000a ; 33 10 0.00244
DCW 0x0027 ; 34 39 0.00952
DCW 0x0058 ; 35 88 0.02148
DCW 0x009c ; 36 156 0.03809
DCW 0x00f2 ; 37 242 0.05908
DCW 0x0159 ; 38 345 0.08423
DCW 0x01d1 ; 39 465 0.11353
DCW 0x0258 ; 40 600 0.14648
DCW 0x02ed ; 41 749 0.18286
DCW 0x038e ; 42 910 0.22217
DCW 0x043b ; 43 1083 0.26440
DCW 0x04f0 ; 44 1264 0.30859
DCW 0x05ad ; 45 1453 0.35474
DCW 0x0670 ; 46 1648 0.40234
DCW 0x0737 ; 47 1847 0.45093
DCW 0x0800 ; 48 2048 0.50000
DCW 0x08c9 ; 49 2249 0.54907
DCW 0x0990 ; 50 2448 0.59766
DCW 0x0a53 ; 51 2643 0.64526
DCW 0x0b10 ; 52 2832 0.69141
DCW 0x0bc5 ; 53 3013 0.73560
DCW 0x0c72 ; 54 3186 0.77783
DCW 0x0d13 ; 55 3347 0.81714
DCW 0x0da8 ; 56 3496 0.85352
DCW 0x0e2f ; 57 3631 0.88647
DCW 0x0ea7 ; 58 3751 0.91577
DCW 0x0f0e ; 59 3854 0.94092
DCW 0x0f64 ; 60 3940 0.96191
DCW 0x0fa8 ; 61 4008 0.97852
DCW 0x0fd9 ; 62 4057 0.99048
DCW 0x0ff6 ; 63 4086 0.99756
END

View file

@ -0,0 +1,38 @@
clc
clear
N = 64 %input('Nombre d''échantilllons pour ce signal : ');
Frel = input('Fréquence normalisée (nombre de périodes dans la durée totale) : ');
Ph0 = input('Phase a l''origine (en degrés) : ');
Ph0 = Ph0 * pi / 180.0; % a present en radian
Ampl = 2048;
Offset = 2048;
%% Création du fichier .asm
fileID = fopen(['Signalech64.asm'], 'w');
fprintf(fileID,'\tAREA Signal, DATA, READONLY\n');
fprintf(fileID,'\texport LeSignal\n');
fprintf(fileID,'LeSignal\n');
for i = 1: N
% fonction a modifier en fonction des besoins
Sig(i) = Offset + Ampl * cos( 2*pi*Frel*(i-1)/N + Ph0 );
% arrondi
iSig = int16(Sig(i));
% bornage du signal similaire a la sortie brute de l'ADC 12 bits
if ( iSig < 0 )
iSig = 0;
end
if ( iSig > 4095 )
iSig = 4095;
end
fprintf(fileID,'\tDCW\t0x%04x\t; %2d %4d %7.5f\n',iSig, i-1, iSig, double(iSig) / 4096.0 );
end
fprintf(fileID,'\tEND\n');
fclose(fileID);
plot(Sig);

266
PjtKEIL_Final/Src/DFT.s Normal file
View file

@ -0,0 +1,266 @@
PRESERVE8
THUMB
IMPORT LeSignal
EXPORT DFT_ModuleAuCarre
EXPORT DFT_reel
EXPORT DFT_imag
;int DFT_ModuleAuCarre( short int * Signal64ech, char k){
; int acumReel = 0;
; int acumImag = 0;
; for (int i= 0; i< 64; i++){
; acumReel += Signal64ech[i]*TabCos[(i*k)%64];
; }
; return acumReel;
;}
; ====================== zone de réservation de données, ======================================
;Section RAM (read only) :
area mesdata,data,readonly
;Section RAM (read write):
area maram,data,readwrite
; ===============================================================================================
;Section ROM code (read only) :
area moncode,code,readonly
; écrire le code ici
DFT_reel proc
;int DFT_ModuleAuCarre( short int * Signal64ech, char k){
push {r4, r5, r6, r7}
; int acumReel = 0;
ldr r5,=TabCos
mov r2,#0 ; r2 = acumReel
mov r7, #63
mov r3,#0 ; r3 = i
boucle1
; for (int i= 0; i< 64; i++){
mul r4,r3,r1 ; = i*k
and r4,r7 ;= i*k%64
ldrsh r6, [r5,r4,LSL #1]; r6 = TabCos[(i*k)%64]
ldrsh r4, [r0,r3,LSL #1]; r4 = Signal64ech[i];
mul r4, r4,r6
add r2, r4
add r3, #1
cmp r3,#63
ble boucle1
mov r0, r2
; acumReel += Signal64ech[i]*TabCos[(i*k)%64];
; }
; return acumReel;
;}
pop {r4,r5,r6,r7}
bx lr
ENDFUNC
DFT_imag proc
;int DFT_ModuleAuCarre( short int * Signal64ech, char k){
push {r4, r5, r6, r7}
; int acumReel = 0;
ldr r5,=TabSin
mov r2,#0 ; r2 = acumReel
mov r7, #63
mov r3,#0 ; r3 = i
boucle2
; for (int i= 0; i< 64; i++){
mul r4,r3,r1 ; = i*k
and r4,r7 ;= i*k%64
ldrsh r6, [r5,r4,LSL #1]; r6 = TabCos[(i*k)%64]
ldrsh r4, [r0,r3,LSL #1]; r4 = Signal64ech[i];
mul r4, r4,r6
add r2, r4
add r3, #1
cmp r3,#63
ble boucle2
mov r0, r2
; acumReel += Signal64ech[i]*TabCos[(i*k)%64];
; }
; return acumReel;
;}
pop {r4,r5,r6,r7}
bx lr
ENDFUNC
DFT_ModuleAuCarre proc
;int DFT_ModuleAuCarre( short int * Signal64ech, char k){
push {lr}
push {r4}
push {r0}
push {r1}
bl DFT_reel
mov r4,r0
pop {r1}
pop {r0}
bl DFT_imag
asr r4, #16
asr r0, #16
mul r4,r4
mul r0,r0;utiliser multiplication longue (smul?) et garder uniquement le registre de poids fort
add r0,r4
pop{r4}
pop{pc}
ENDFUNC
;Section ROM code (read only) :
AREA Trigo, DATA, READONLY
; codage fractionnaire 1.15
export TabCos
export TabSin
TabCos
DCW 32767 ; 0 0x7fff 0.99997
DCW 32610 ; 1 0x7f62 0.99518
DCW 32138 ; 2 0x7d8a 0.98077
DCW 31357 ; 3 0x7a7d 0.95694
DCW 30274 ; 4 0x7642 0.92389
DCW 28899 ; 5 0x70e3 0.88193
DCW 27246 ; 6 0x6a6e 0.83148
DCW 25330 ; 7 0x62f2 0.77301
DCW 23170 ; 8 0x5a82 0.70709
DCW 20788 ; 9 0x5134 0.63440
DCW 18205 ; 10 0x471d 0.55557
DCW 15447 ; 11 0x3c57 0.47141
DCW 12540 ; 12 0x30fc 0.38269
DCW 9512 ; 13 0x2528 0.29028
DCW 6393 ; 14 0x18f9 0.19510
DCW 3212 ; 15 0x0c8c 0.09802
DCW 0 ; 16 0x0000 0.00000
DCW -3212 ; 17 0xf374 -0.09802
DCW -6393 ; 18 0xe707 -0.19510
DCW -9512 ; 19 0xdad8 -0.29028
DCW -12540 ; 20 0xcf04 -0.38269
DCW -15447 ; 21 0xc3a9 -0.47141
DCW -18205 ; 22 0xb8e3 -0.55557
DCW -20788 ; 23 0xaecc -0.63440
DCW -23170 ; 24 0xa57e -0.70709
DCW -25330 ; 25 0x9d0e -0.77301
DCW -27246 ; 26 0x9592 -0.83148
DCW -28899 ; 27 0x8f1d -0.88193
DCW -30274 ; 28 0x89be -0.92389
DCW -31357 ; 29 0x8583 -0.95694
DCW -32138 ; 30 0x8276 -0.98077
DCW -32610 ; 31 0x809e -0.99518
DCW -32768 ; 32 0x8000 -1.00000
DCW -32610 ; 33 0x809e -0.99518
DCW -32138 ; 34 0x8276 -0.98077
DCW -31357 ; 35 0x8583 -0.95694
DCW -30274 ; 36 0x89be -0.92389
DCW -28899 ; 37 0x8f1d -0.88193
DCW -27246 ; 38 0x9592 -0.83148
DCW -25330 ; 39 0x9d0e -0.77301
DCW -23170 ; 40 0xa57e -0.70709
DCW -20788 ; 41 0xaecc -0.63440
DCW -18205 ; 42 0xb8e3 -0.55557
DCW -15447 ; 43 0xc3a9 -0.47141
DCW -12540 ; 44 0xcf04 -0.38269
DCW -9512 ; 45 0xdad8 -0.29028
DCW -6393 ; 46 0xe707 -0.19510
DCW -3212 ; 47 0xf374 -0.09802
DCW 0 ; 48 0x0000 0.00000
DCW 3212 ; 49 0x0c8c 0.09802
DCW 6393 ; 50 0x18f9 0.19510
DCW 9512 ; 51 0x2528 0.29028
DCW 12540 ; 52 0x30fc 0.38269
DCW 15447 ; 53 0x3c57 0.47141
DCW 18205 ; 54 0x471d 0.55557
DCW 20788 ; 55 0x5134 0.63440
DCW 23170 ; 56 0x5a82 0.70709
DCW 25330 ; 57 0x62f2 0.77301
DCW 27246 ; 58 0x6a6e 0.83148
DCW 28899 ; 59 0x70e3 0.88193
DCW 30274 ; 60 0x7642 0.92389
DCW 31357 ; 61 0x7a7d 0.95694
DCW 32138 ; 62 0x7d8a 0.98077
DCW 32610 ; 63 0x7f62 0.99518
TabSin
DCW 0 ; 0 0x0000 0.00000
DCW 3212 ; 1 0x0c8c 0.09802
DCW 6393 ; 2 0x18f9 0.19510
DCW 9512 ; 3 0x2528 0.29028
DCW 12540 ; 4 0x30fc 0.38269
DCW 15447 ; 5 0x3c57 0.47141
DCW 18205 ; 6 0x471d 0.55557
DCW 20788 ; 7 0x5134 0.63440
DCW 23170 ; 8 0x5a82 0.70709
DCW 25330 ; 9 0x62f2 0.77301
DCW 27246 ; 10 0x6a6e 0.83148
DCW 28899 ; 11 0x70e3 0.88193
DCW 30274 ; 12 0x7642 0.92389
DCW 31357 ; 13 0x7a7d 0.95694
DCW 32138 ; 14 0x7d8a 0.98077
DCW 32610 ; 15 0x7f62 0.99518
DCW 32767 ; 16 0x7fff 0.99997
DCW 32610 ; 17 0x7f62 0.99518
DCW 32138 ; 18 0x7d8a 0.98077
DCW 31357 ; 19 0x7a7d 0.95694
DCW 30274 ; 20 0x7642 0.92389
DCW 28899 ; 21 0x70e3 0.88193
DCW 27246 ; 22 0x6a6e 0.83148
DCW 25330 ; 23 0x62f2 0.77301
DCW 23170 ; 24 0x5a82 0.70709
DCW 20788 ; 25 0x5134 0.63440
DCW 18205 ; 26 0x471d 0.55557
DCW 15447 ; 27 0x3c57 0.47141
DCW 12540 ; 28 0x30fc 0.38269
DCW 9512 ; 29 0x2528 0.29028
DCW 6393 ; 30 0x18f9 0.19510
DCW 3212 ; 31 0x0c8c 0.09802
DCW 0 ; 32 0x0000 0.00000
DCW -3212 ; 33 0xf374 -0.09802
DCW -6393 ; 34 0xe707 -0.19510
DCW -9512 ; 35 0xdad8 -0.29028
DCW -12540 ; 36 0xcf04 -0.38269
DCW -15447 ; 37 0xc3a9 -0.47141
DCW -18205 ; 38 0xb8e3 -0.55557
DCW -20788 ; 39 0xaecc -0.63440
DCW -23170 ; 40 0xa57e -0.70709
DCW -25330 ; 41 0x9d0e -0.77301
DCW -27246 ; 42 0x9592 -0.83148
DCW -28899 ; 43 0x8f1d -0.88193
DCW -30274 ; 44 0x89be -0.92389
DCW -31357 ; 45 0x8583 -0.95694
DCW -32138 ; 46 0x8276 -0.98077
DCW -32610 ; 47 0x809e -0.99518
DCW -32768 ; 48 0x8000 -1.00000
DCW -32610 ; 49 0x809e -0.99518
DCW -32138 ; 50 0x8276 -0.98077
DCW -31357 ; 51 0x8583 -0.95694
DCW -30274 ; 52 0x89be -0.92389
DCW -28899 ; 53 0x8f1d -0.88193
DCW -27246 ; 54 0x9592 -0.83148
DCW -25330 ; 55 0x9d0e -0.77301
DCW -23170 ; 56 0xa57e -0.70709
DCW -20788 ; 57 0xaecc -0.63440
DCW -18205 ; 58 0xb8e3 -0.55557
DCW -15447 ; 59 0xc3a9 -0.47141
DCW -12540 ; 60 0xcf04 -0.38269
DCW -9512 ; 61 0xdad8 -0.29028
DCW -6393 ; 62 0xe707 -0.19510
DCW -3212 ; 63 0xf374 -0.09802
END

View file

@ -0,0 +1,71 @@
PRESERVE8
THUMB
EXPORT CallbackSon
EXPORT SortieSon
EXPORT i
IMPORT Son
IMPORT LongueurSon
INCLUDE DriverJeuLaser.inc
;void CallbackSon(void){
; static int i = 0;
; if(i < 5512){
;0 SortieSon = (Son[i] + 32768) * 719 / 65535;
; i++;
; }
;}
; ====================== zone de réservation de données, ======================================
;Section RAM (read only) :
area mesdata,data,readonly
;Section RAM (read write):
area maram,data,readwrite
i dcd 0
SortieSon dcw 0
; ===============================================================================================
;Section ROM code (read only) :
area moncode,code,readonly
; écrire le code ici
CallbackSon proc
push {lr}
; static int i = 0;
ldr r0,=i
ldr r1, [r0]
ldr r2,LongueurSon
cmp r2, r1
; if(i < 5512)
ble fin
;0 SortieSon = (Son[i] + 32768) * 719 / 65535;
ldr r3,=Son
ldrsh r2, [r3,r1, LSL#1]
add r2, #32768
mov r12, #719
mul r2, r12
mov r12, #65535
udiv r2, r12
; i++;
add r1, #1
str r1, [r0]
; On stocke enfin la sortie son
ldr r0, =SortieSon
strh r2, [r0]
mov r0, r2
bl PWM_Set_Value_TIM3_Ch3
fin
pop {pc}
ENDFUNC
END

View file

@ -0,0 +1,68 @@
AREA Signal, DATA, READONLY
export LeSignal
LeSignal
DCW 0x0fff ; 0 4095 0.99976
DCW 0x0ff6 ; 1 4086 0.99756
DCW 0x0fd9 ; 2 4057 0.99048
DCW 0x0fa8 ; 3 4008 0.97852
DCW 0x0f64 ; 4 3940 0.96191
DCW 0x0f0e ; 5 3854 0.94092
DCW 0x0ea7 ; 6 3751 0.91577
DCW 0x0e2f ; 7 3631 0.88647
DCW 0x0da8 ; 8 3496 0.85352
DCW 0x0d13 ; 9 3347 0.81714
DCW 0x0c72 ; 10 3186 0.77783
DCW 0x0bc5 ; 11 3013 0.73560
DCW 0x0b10 ; 12 2832 0.69141
DCW 0x0a53 ; 13 2643 0.64526
DCW 0x0990 ; 14 2448 0.59766
DCW 0x08c9 ; 15 2249 0.54907
DCW 0x0800 ; 16 2048 0.50000
DCW 0x0737 ; 17 1847 0.45093
DCW 0x0670 ; 18 1648 0.40234
DCW 0x05ad ; 19 1453 0.35474
DCW 0x04f0 ; 20 1264 0.30859
DCW 0x043b ; 21 1083 0.26440
DCW 0x038e ; 22 910 0.22217
DCW 0x02ed ; 23 749 0.18286
DCW 0x0258 ; 24 600 0.14648
DCW 0x01d1 ; 25 465 0.11353
DCW 0x0159 ; 26 345 0.08423
DCW 0x00f2 ; 27 242 0.05908
DCW 0x009c ; 28 156 0.03809
DCW 0x0058 ; 29 88 0.02148
DCW 0x0027 ; 30 39 0.00952
DCW 0x000a ; 31 10 0.00244
DCW 0x0000 ; 32 0 0.00000
DCW 0x000a ; 33 10 0.00244
DCW 0x0027 ; 34 39 0.00952
DCW 0x0058 ; 35 88 0.02148
DCW 0x009c ; 36 156 0.03809
DCW 0x00f2 ; 37 242 0.05908
DCW 0x0159 ; 38 345 0.08423
DCW 0x01d1 ; 39 465 0.11353
DCW 0x0258 ; 40 600 0.14648
DCW 0x02ed ; 41 749 0.18286
DCW 0x038e ; 42 910 0.22217
DCW 0x043b ; 43 1083 0.26440
DCW 0x04f0 ; 44 1264 0.30859
DCW 0x05ad ; 45 1453 0.35474
DCW 0x0670 ; 46 1648 0.40234
DCW 0x0737 ; 47 1847 0.45093
DCW 0x0800 ; 48 2048 0.50000
DCW 0x08c9 ; 49 2249 0.54907
DCW 0x0990 ; 50 2448 0.59766
DCW 0x0a53 ; 51 2643 0.64526
DCW 0x0b10 ; 52 2832 0.69141
DCW 0x0bc5 ; 53 3013 0.73560
DCW 0x0c72 ; 54 3186 0.77783
DCW 0x0d13 ; 55 3347 0.81714
DCW 0x0da8 ; 56 3496 0.85352
DCW 0x0e2f ; 57 3631 0.88647
DCW 0x0ea7 ; 58 3751 0.91577
DCW 0x0f0e ; 59 3854 0.94092
DCW 0x0f64 ; 60 3940 0.96191
DCW 0x0fa8 ; 61 4008 0.97852
DCW 0x0fd9 ; 62 4057 0.99048
DCW 0x0ff6 ; 63 4086 0.99756
END

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,104 @@
#include "DriverJeuLaser.h"
#include "stdio.h"
#include "Affichage_Valise.h"
# define PERIODE 6552
# define PERIODE_PWM 720
# define F1 17
# define F2 18
# define F3 19
# define F4 20
# define F5 23
# define F6 24
extern int DFT_ModuleAuCarre(short int* , char);
extern int DFT_reel(short int* , char);
extern int DFT_imag(short int* , char);
extern void CallbackSon(void);
extern short int TabCos[];
extern short int TabSin[];
int resultat_module_carre [64];
short int dma_buf [64];
//void DFT_ModuleAuCarre( short int * Signal64ech, char k, long int * resultat){
// int acumReel = 0;
// int acumImag = 0;
// for (int i= 0; i< 64; i++){
// acumReel += Signal64ech[i]*TabCos[(i*k)%64];
// acumImag += Signal64ech[i]*TabSin[(i*k)%64];
// }
// *resultat = acumReel*acumReel + acumImag*acumImag;
//}
void callback_SysTick(){
Start_DMA1(64);
Wait_On_End_Of_DMA1();
Stop_DMA1;
}
int main(void)
{
// ===========================================================================
// ============= INIT PERIPH (faites qu'une seule fois) =====================
// ===========================================================================
// Après exécution : le coeur CPU est clocké à 72MHz ainsi que tous les timers
CLOCK_Configure();
// ------------------------ Config DFT ------------------------------
// Config Timer (Interruptions toutes les 5ms)
int periode_ticks = 360000; // pour avoir une interruption toutes les 5ms
char prio = 0; // Eventuellement à changer quand fusion avec le son
Systick_Period_ff(periode_ticks);
Systick_Prio_IT(prio, callback_SysTick);
SysTick_On;
SysTick_Enable_IT;
// Config ADC (mesure pendant 200 µs)
Init_TimingADC_ActiveADC_ff(ADC1, 72);
Single_Channel_ADC(ADC1, 2);
Init_Conversion_On_Trig_Timer_ff(ADC1, TIM2_CC2, 225);
Init_ADC1_DMA1(0, dma_buf);
// ------------------------ Config Son ------------------------------
Timer_1234_Init_ff(TIM4,PERIODE);
Active_IT_Debordement_Timer(TIM4, 2, CallbackSon);
//Timer_1234_Init_ff(TIM3,PERIODE_PWM);
PWM_Init_ff( TIM3, 3, 720);
GPIO_Configure(GPIOB, 0, OUTPUT, ALT_PPULL);
while (1)
{
for(int k = 0; k < 64; k++){
resultat_module_carre[k] = DFT_ModuleAuCarre(dma_buf,k);
}
}
}

View file

@ -0,0 +1,335 @@
;******************** (C) COPYRIGHT 2011 STMicroelectronics ********************
;* File Name : startup_stm32f10x_md.s
;* Author : MCD Application Team
;* Version : V3.5.0
;* Date : 11-March-2011
;* Description : STM32F10x Medium Density Devices vector table for MDK-ARM
;* toolchain.
;* This module performs:
;* - Set the initial SP
;* - Set the initial PC == Reset_Handler
;* - Set the vector table entries with the exceptions ISR address
;* - Configure the clock system
;* - Branches to __main in the C library (which eventually
;* calls main()).
;* After Reset the CortexM3 processor is in Thread mode,
;* priority is Privileged, and the Stack is set to Main.
;* <<< Use Configuration Wizard in Context Menu >>>
;*******************************************************************************
; THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
; WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
; AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
; INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
; CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
; INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
;*******************************************************************************
; Amount of memory (in bytes) allocated for Stack
; Tailor this value to your application needs
; <h> Stack Configuration
; <o> Stack Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Stack_Size EQU 0x00000400
AREA STACK, NOINIT, READWRITE, ALIGN=3
Stack_Mem SPACE Stack_Size
__initial_sp
; <h> Heap Configuration
; <o> Heap Size (in Bytes) <0x0-0xFFFFFFFF:8>
; </h>
Heap_Size EQU 0x00000200
AREA HEAP, NOINIT, READWRITE, ALIGN=3
__heap_base
Heap_Mem SPACE Heap_Size
__heap_limit
PRESERVE8
THUMB
; Vector Table Mapped to Address 0 at Reset
AREA RESET, DATA, READONLY
EXPORT __Vectors
EXPORT __Vectors_End
EXPORT __Vectors_Size
__Vectors DCD __initial_sp ; Top of Stack
DCD Reset_Handler ; Reset Handler
DCD NMI_Handler ; NMI Handler
DCD HardFault_Handler ; Hard Fault Handler
DCD MemManage_Handler ; MPU Fault Handler
DCD BusFault_Handler ; Bus Fault Handler
DCD UsageFault_Handler ; Usage Fault Handler
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD 0 ; Reserved
DCD SVC_Handler ; SVCall Handler
DCD DebugMon_Handler ; Debug Monitor Handler
DCD 0 ; Reserved
DCD PendSV_Handler ; PendSV Handler
DCD SysTick_Handler ; SysTick Handler
; External Interrupts
DCD WWDG_IRQHandler ; Window Watchdog
DCD PVD_IRQHandler ; PVD through EXTI Line detect
DCD TAMPER_IRQHandler ; Tamper
DCD RTC_IRQHandler ; RTC
DCD FLASH_IRQHandler ; Flash
DCD RCC_IRQHandler ; RCC
DCD EXTI0_IRQHandler ; EXTI Line 0
DCD EXTI1_IRQHandler ; EXTI Line 1
DCD EXTI2_IRQHandler ; EXTI Line 2
DCD EXTI3_IRQHandler ; EXTI Line 3
DCD EXTI4_IRQHandler ; EXTI Line 4
DCD DMA1_Channel1_IRQHandler ; DMA1 Channel 1
DCD DMA1_Channel2_IRQHandler ; DMA1 Channel 2
DCD DMA1_Channel3_IRQHandler ; DMA1 Channel 3
DCD DMA1_Channel4_IRQHandler ; DMA1 Channel 4
DCD DMA1_Channel5_IRQHandler ; DMA1 Channel 5
DCD DMA1_Channel6_IRQHandler ; DMA1 Channel 6
DCD DMA1_Channel7_IRQHandler ; DMA1 Channel 7
DCD ADC1_2_IRQHandler ; ADC1_2
DCD USB_HP_CAN1_TX_IRQHandler ; USB High Priority or CAN1 TX
DCD USB_LP_CAN1_RX0_IRQHandler ; USB Low Priority or CAN1 RX0
DCD CAN1_RX1_IRQHandler ; CAN1 RX1
DCD CAN1_SCE_IRQHandler ; CAN1 SCE
DCD EXTI9_5_IRQHandler ; EXTI Line 9..5
DCD TIM1_BRK_IRQHandler ; TIM1 Break
DCD TIM1_UP_IRQHandler ; TIM1 Update
DCD TIM1_TRG_COM_IRQHandler ; TIM1 Trigger and Commutation
DCD TIM1_CC_IRQHandler ; TIM1 Capture Compare
DCD TIM2_IRQHandler ; TIM2
DCD TIM3_IRQHandler ; TIM3
DCD TIM4_IRQHandler ; TIM4
DCD I2C1_EV_IRQHandler ; I2C1 Event
DCD I2C1_ER_IRQHandler ; I2C1 Error
DCD I2C2_EV_IRQHandler ; I2C2 Event
DCD I2C2_ER_IRQHandler ; I2C2 Error
DCD SPI1_IRQHandler ; SPI1
DCD SPI2_IRQHandler ; SPI2
DCD USART1_IRQHandler ; USART1
DCD USART2_IRQHandler ; USART2
DCD USART3_IRQHandler ; USART3
DCD EXTI15_10_IRQHandler ; EXTI Line 15..10
DCD RTCAlarm_IRQHandler ; RTC Alarm through EXTI Line
DCD USBWakeUp_IRQHandler ; USB Wakeup from suspend
__Vectors_End
__Vectors_Size EQU __Vectors_End - __Vectors
AREA |.text|, CODE, READONLY
; Reset handler
Reset_Handler PROC
EXPORT Reset_Handler [WEAK]
IMPORT __main
LDR R0, =SystemInit
BLX R0
;
; Enable UsageFault, MemFault and Busfault interrupts
;
_SHCSR EQU 0xE000ED24 ; SHCSR is located at address 0xE000ED24
LDR.W R0, =_SHCSR
LDR R1, [R0] ; Read CPACR
ORR R1, R1, #(0x7 << 16) ; Set bits 16,17,18 to enable usagefault, busfault, memfault interrupts
STR R1, [R0] ; Write back the modified value to the CPACR
DSB ; Wait for store to complete
;
; Set priority grouping (PRIGROUP) in AIRCR to 3 (16 levels for group priority and 0 for subpriority)
;
_AIRCR EQU 0xE000ED0C
_AIRCR_VAL EQU 0x05FA0300
LDR.W R0, =_AIRCR
LDR.W R1, =_AIRCR_VAL
STR R1,[R0]
;
; Finaly, jump to main function (void main (void))
;
LDR R0, =__main
BX R0
ENDP
SystemInit PROC
EXPORT SystemInit [WEAK]
BX LR
ENDP
; Dummy Exception Handlers (infinite loops which can be modified)
NMI_Handler PROC
EXPORT NMI_Handler [WEAK]
B .
ENDP
HardFault_Handler\
PROC
EXPORT HardFault_Handler [WEAK]
B .
ENDP
MemManage_Handler\
PROC
EXPORT MemManage_Handler [WEAK]
B .
ENDP
BusFault_Handler\
PROC
EXPORT BusFault_Handler [WEAK]
B .
ENDP
UsageFault_Handler\
PROC
EXPORT UsageFault_Handler [WEAK]
B .
ENDP
SVC_Handler PROC
EXPORT SVC_Handler [WEAK]
B .
ENDP
DebugMon_Handler\
PROC
EXPORT DebugMon_Handler [WEAK]
B .
ENDP
PendSV_Handler PROC
EXPORT PendSV_Handler [WEAK]
B .
ENDP
SysTick_Handler PROC
EXPORT SysTick_Handler [WEAK]
B .
ENDP
Default_Handler PROC
EXPORT WWDG_IRQHandler [WEAK]
EXPORT PVD_IRQHandler [WEAK]
EXPORT TAMPER_IRQHandler [WEAK]
EXPORT RTC_IRQHandler [WEAK]
EXPORT FLASH_IRQHandler [WEAK]
EXPORT RCC_IRQHandler [WEAK]
EXPORT EXTI0_IRQHandler [WEAK]
EXPORT EXTI1_IRQHandler [WEAK]
EXPORT EXTI2_IRQHandler [WEAK]
EXPORT EXTI3_IRQHandler [WEAK]
EXPORT EXTI4_IRQHandler [WEAK]
EXPORT DMA1_Channel1_IRQHandler [WEAK]
EXPORT DMA1_Channel2_IRQHandler [WEAK]
EXPORT DMA1_Channel3_IRQHandler [WEAK]
EXPORT DMA1_Channel4_IRQHandler [WEAK]
EXPORT DMA1_Channel5_IRQHandler [WEAK]
EXPORT DMA1_Channel6_IRQHandler [WEAK]
EXPORT DMA1_Channel7_IRQHandler [WEAK]
EXPORT ADC1_2_IRQHandler [WEAK]
EXPORT USB_HP_CAN1_TX_IRQHandler [WEAK]
EXPORT USB_LP_CAN1_RX0_IRQHandler [WEAK]
EXPORT CAN1_RX1_IRQHandler [WEAK]
EXPORT CAN1_SCE_IRQHandler [WEAK]
EXPORT EXTI9_5_IRQHandler [WEAK]
EXPORT TIM1_BRK_IRQHandler [WEAK]
EXPORT TIM1_UP_IRQHandler [WEAK]
EXPORT TIM1_TRG_COM_IRQHandler [WEAK]
EXPORT TIM1_CC_IRQHandler [WEAK]
EXPORT TIM2_IRQHandler [WEAK]
EXPORT TIM3_IRQHandler [WEAK]
EXPORT TIM4_IRQHandler [WEAK]
EXPORT I2C1_EV_IRQHandler [WEAK]
EXPORT I2C1_ER_IRQHandler [WEAK]
EXPORT I2C2_EV_IRQHandler [WEAK]
EXPORT I2C2_ER_IRQHandler [WEAK]
EXPORT SPI1_IRQHandler [WEAK]
EXPORT SPI2_IRQHandler [WEAK]
EXPORT USART1_IRQHandler [WEAK]
EXPORT USART2_IRQHandler [WEAK]
EXPORT USART3_IRQHandler [WEAK]
EXPORT EXTI15_10_IRQHandler [WEAK]
EXPORT RTCAlarm_IRQHandler [WEAK]
EXPORT USBWakeUp_IRQHandler [WEAK]
WWDG_IRQHandler
PVD_IRQHandler
TAMPER_IRQHandler
RTC_IRQHandler
FLASH_IRQHandler
RCC_IRQHandler
EXTI0_IRQHandler
EXTI1_IRQHandler
EXTI2_IRQHandler
EXTI3_IRQHandler
EXTI4_IRQHandler
DMA1_Channel1_IRQHandler
DMA1_Channel2_IRQHandler
DMA1_Channel3_IRQHandler
DMA1_Channel4_IRQHandler
DMA1_Channel5_IRQHandler
DMA1_Channel6_IRQHandler
DMA1_Channel7_IRQHandler
ADC1_2_IRQHandler
USB_HP_CAN1_TX_IRQHandler
USB_LP_CAN1_RX0_IRQHandler
CAN1_RX1_IRQHandler
CAN1_SCE_IRQHandler
EXTI9_5_IRQHandler
TIM1_BRK_IRQHandler
TIM1_UP_IRQHandler
TIM1_TRG_COM_IRQHandler
TIM1_CC_IRQHandler
TIM2_IRQHandler
TIM3_IRQHandler
TIM4_IRQHandler
I2C1_EV_IRQHandler
I2C1_ER_IRQHandler
I2C2_EV_IRQHandler
I2C2_ER_IRQHandler
SPI1_IRQHandler
SPI2_IRQHandler
USART1_IRQHandler
USART2_IRQHandler
USART3_IRQHandler
EXTI15_10_IRQHandler
RTCAlarm_IRQHandler
USBWakeUp_IRQHandler
B .
ENDP
ALIGN
;*******************************************************************************
; User Stack and Heap initialization
;*******************************************************************************
IF :DEF:__MICROLIB
EXPORT __initial_sp
EXPORT __heap_base
EXPORT __heap_limit
ELSE
IMPORT __use_two_region_memory
EXPORT __user_initial_stackheap
__user_initial_stackheap
LDR R0, = Heap_Mem
LDR R1, =(Stack_Mem + Stack_Size)
LDR R2, = (Heap_Mem + Heap_Size)
LDR R3, = Stack_Mem
BX LR
ALIGN
ENDIF
END
;******************* (C) COPYRIGHT 2011 STMicroelectronics *****END OF FILE*****

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,38 @@
1. Déterminer les 6 valeurs de k (k1 à k6) correspondant aux 6 fréquences des pistolets ( voir votre
rapport intermédiaire ou le sujet signal de la partie I, sur Moodle)
Les valeurs de k qui nous interessent sont :
Fréquence (en kHz) | 85 | 90 | 95 | 100 | 115| 120 |
|---|---|---|---|---|---|---|
| K | 17 | 18 | 19 | 20 | 23 | 24 |
La graduation des fréquence est donnée par
$$
\delta \omega = \frac{1}{T} = 5000 kHz
$$
ainsi:
$$
k_n = \frac{f_n}{5000 kHz}
$$
2. Le codage fonctionne de la même maniére que le complément à deux avec des valeur fractionnaire.
Considérons un codage A.B sur x bits
Les nombre de ce codage étant représentés par :
$b_{x-1}b_{x-2} \dots b_2b_1b_0$
Si le nombre est compris entre 00000...0 et 0111...1
La valeur décimale du nombre est donnée par :
$$\sum_{i=0}^{x-1} b_i \times 2^{i-B}$$
Et si le nombre est compris entre 100..00 et 11...111
La valeur décimale du nombre est donnée par :
$$-\sum_{i=0}^{x-1} (b_i-1) \times 2^{i-B}$$
$$0x02C1 \to 0b 0000 0010 1100 0001 \to 2^{-3}+2^{-5}+2^{-6}+2^{-12}= 0.172119140625$$
$$0xFE01 \to 0b 1111 1110 0000 0001 \to \sum^{-4}_{i=-11} 2^{i} \text{car nombre négatif} = -0.124755859375$$

View file