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Figures only!

The aim: To reduce dimension
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This is a 2D cloud of points, centered at 0.
Can you find a 1D axis ’containing’ the maximum of information?
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Figures only!

Inertia
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Total inertia: mean square of distances to the center.
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Inertia
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Projected inertia: inertia of projections. How much do we lose?
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Maximizing the projected inertia
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Projected inertia: For what axis is it maximal?
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Maximizing the projected inertia
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Maximizing the projected inertia
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Maximizing the projected inertia

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 0 2 4

−
2

0
2

4

Projected inertia on u:  4.911

x1

x2

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

Projected inertia: For what axis is it maximal?

Olivier Roustant Data analysis, INSA February 14, 2022 6 / 38



Figures only!

Maximizing the projected inertia
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Olivier Roustant Data analysis, INSA February 14, 2022 6 / 38



Figures only!

Maximizing the projected inertia
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Maximizing the projected inertia
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Maximizing the projected inertia
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Maximizing the projected inertia
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Maximizing the projected inertia
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Maximizing the projected inertia
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Figures only!

Maximizing the projected inertia, recursion
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Figures only!

Maximizing the projected inertia, summary
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Maximizing the projected inertia, summary
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Theory
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Theory

Notations and assumption

X: a matrix of size n × p, representing the data:

x1 . . . xj . . . xp

x1 x1
1 . . . x j

1 . . . xp
1

...
...

...
...

xi x1
i . . . x j

i . . . xp
i

...
...

...
...

xn x1
n . . . x j

n . . . xp
n

g: center of gravity (empirical mean), g = x̄ = 1
n
∑n

i=1 xi (∈ Rp).

g x1 . . . xj . . . xp

We assume that g = 0, i.e. the data have been centered.
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Theory

Notations and assumption

The rows of X lie in Rp, and form the indivuals space.
It is an Euclidean space, equipped with the usual `2 norm ‖.‖.

The columns of X lie in Rn, and form the variables space.
It is an Euclidean space. Instead of choosing the usual `2 norm,
we rescale it by 1/n. Indeed, as the data are centered, it
corresponds to the empirical covariance:

〈xj ,xk 〉Rn :=
1
n

n∑
i=1

x j
i x

k
i = ĉov(xj ,xk ).

Notice that orthogonal variables = uncorrelated variables.
Γ denotes the p × p empirical covariance matrix:

Γ =
(

ĉov(xj ,xk )
)

1≤j,k≤p
=

1
n

X>X =
1
n

n∑
i=1

xix>i .
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Theory

Notations and assumption

Inertia: mean squared distance of the data to their center (here 0),

I =
1
n

n∑
i=1

‖xi‖2

Projected inertia on a subspace F ⊆ Rp. Same definition for the
projected points onto F (we denote by ΠF the projection operator):

IF =
1
n

n∑
i=1

‖ΠF (xi)‖2
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Theory

Properties of inertia

Link with variance, and inertia decomposition.
Consider a 1D axis spanned by a unit vector a, and denote Ia = IRa.
Then:

Ia = a>Γa, and I = Ia + Ia⊥

Moreover, Ia and I are interpreted in terms of variances:
Ia is the empirical variance of the projected points onto Ra,
I is the sum of the empirical variances of the p variables:

Ia =
1
n

n∑
i=1

〈xi ,a〉2, I =

p∑
j=1

σ̂2
j , with σ̂2

j =
1
n

n∑
i=1

(x j
i )2

Remark: The empirical variances are computed here by dividing by n the sum
of squares, contrarily to unbiased statistical estimates (division by n − 1).
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Theory

Properties of inertia (proofs)

Left to exercise.
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Theory

Main result

Theorem (principal component analysis)
As the covariance matrix Γ is real symmetric, it admits a spectral
decomposition in orthogonal eigenspaces. Denote λ1 ≥ · · · ≥ λp ≥ 0
the eigenvalues, and v1, . . . ,vp orthogonal eigenvectors. Then:

v1 maximizes Ia over a, which is then equal to λ1.
v2 maximizes Ia over a in (v1)⊥, which is then equal to λ2.
v3 maximizes Ia over a in (v1,v2)⊥, which is then equal to λ3.
...

Furthermore the inertia (called total inertia) is decomposed:

I = Iv1 + · · ·+ Ivp = λ1 + · · ·+ λp
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Theory

Main result (proof)

Left to exercise.
Hint: Use the decomposition of a in the basis of eigenvectors.
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Theory

Principal components

The eigenvectors v1, . . . ,vp define a new orthonormal basis in Rp.

The change of variables is defined by:

C = XP, with P = [v1, . . . ,vp] .

The n × p matrix C is called matrix of principal components.
The columns of C are called principal variables. They contain
the coordinates of the individuals in the new space.
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Theory

Principal components

Principal variables are linear combinations of the original
variables, with coefficients given by the eigenvectors:

Cj = XPj =

p∑
k=1

(vj)kxk

Principal variables are uncorrelated and v̂ar(Ck ) = λk :(
ĉov(Cj ,Ck )

)
1≤j,k≤p

=
1
n

C>C = P>ΓP = diag(λ1, . . . , λp).
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Theory

Remark: singular value / spectral decomposition

PCA can be done with Singular Value Decomposition (SVD), which
decomposes a rectangular matrix n ×m or rank r as

X = UΛ1/2V>,

where Λ is the diagonal matrix containing the r non-zero eigenvalues of X>X
(or XX>), ranked by decreasing order, and U (resp. V) is an orthogonal matrix
for ‖.‖Rn (resp. for ‖.‖Rm ) containing the eigenvectors of XX> (resp. X>X).

In the frequent case when p = r (e.g. n > p), we have:

V = P, Λ = diag(λ1, . . . , λn).

(In the general case, V contains the r columns of P corresponding to non-zero
eigenvalues.) Further, due to our definition of the scalar product in Rn, we
have 1

n U>U = Ip. Then, you can recover all the formulas of the textbook, e.g.:

C = XP = UΛ1/2P>P = UΛ1/2.
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Variations (metric, weights)

Variations (metric, weights)
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Variations (metric, weights)

Changing the metric in the individuals space

Consider a new norm on Rp, called metric, defined by a positive
definite matrix M, of size p:

‖x‖2M = x>Mx.

Let R be an invertible matrix s.t. R>R = M (e.g. square root, Choleski
decomposition). Then, the map

R :
(Rp, ‖.‖M) → (Rp, ‖.‖)

x 7→ Rx

is an isometry, and thus preserves distances and orthogonality.

Indeed: ‖Rx‖2 = (Rx)>(Rx) = x>Mx = ‖x‖2
M .
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Variations (metric, weights)

Changing the metric in the individuals space

Due to the isometry property, we deduce immediately:

PCA with / without metric
v max. projected inertia for original data x1, . . . ,xn with metric ‖.‖M

⇔
Rv max. proj. inertia for transformed data Rx1, . . . ,Rxn with ‖.‖

⇔
Rv is an eigenvector of 1

n
∑n

i=1(Rxi)(Rxi)
> = R

(1
n X>X

)
R>

⇔
v is an eigenvector of

(1
n X>X

)
M = ΓM

Olivier Roustant Data analysis, INSA February 14, 2022 24 / 38



Variations (metric, weights)

Changing the metric in the individuals space

Recall that the data are assumed to be centered.

Example. Standardize (centered) data.

M = diag

(
1
σ̂2

1
, . . . ,

1
σ̂2

p

)

Then we can choose R = diag
(

1
σ̂1
, . . . , 1

σ̂p

)
. Thus doing PCA with the

metric M is equivalent to doing usual PCA on the standardized data.
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Variations (metric, weights)

Changing the weights in the variable space

In the standard formulation, each individual x1, . . . ,xn has weight 1
n .

Obviously, one can use positive weights ω1, . . . , ωn that sum to one. It
can be useful if some individuals have more importance.

This can be viewed as an isometric transformation in the space Rn by
the diagonal matrix containing the square roots of ωi .
The theory is immediately adapted, by modifying the definitions, e.g.:

I =
n∑

i=1

ωi‖xi‖2, Γ =
n∑

i=1

ωixix>i .
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Variations (metric, weights)

Link between the notations slides / textbook

In this presentation, we started from the simplest case (centered data,
standard Euclidean metric, same weights), and explained how to
obtain the general formula.

In the textbook, the general case is considered.

To obtain the formula of the slideshow from the textbook, you should
simply use:

X̄ = X, M = Ip, D =
1
n

In, V = P, S = Γ
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Results interpretation

Results interpretation
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Results interpretation

Example on a temperature dataset
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Dataset: Temperature at n = 36 cities (individuals) for p = 12 months (variables).
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Results interpretation

Dimension reduction

Here the variables are highly correlated, and a strong dimension
reduction is expected. The decrease of inertia shows that 2
dimensions explain approx 99% of the variance.
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Results interpretation

Interpretation of principal components
Remember that Cj =

∑p
k=1(vj)kxk .

To interpret Cj , look at vj . Here we can plot them as a function of time.
C1 ∝ (x1 + · · ·+ x12), proportional to the annual temperature
C2 ∝ (x5 + ...+ x8)− (x1 + x2 + x11 + x12), contrast summer/winter
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Coordinates of the first 2 eigenvectors in R12.
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Results interpretation

Graphics for individuals
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PCA: Projection on the first 2 principal axis.
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Results interpretation

Graphics for variables

The principal variables Ck are orthogonal with variance λk . Thus,
they define an orthonormal basis Uk = Ck/

√
λk .

Consider the coordinates aj,k of the original variables in this basis

aj,k = cov(Xj ,Uk ).

We thus have, ‖xj‖2Rn = σ̂2
j =

∑
k a2

j,k .

The idea is to plot these coordinates for two principal components.
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Results interpretation

Graphics for variables, case of unit variance

When the variables have been normalized (unit variance),

aj,k = cor(Xj ,Uk ) = cos ̂(Xj ,Uk )

and
∑p

k=1 a2
j,k = 1.

Thus the coordinates (aj,k )k belong to a p-dimensional sphere.

Further (aj,1,aj,2) belongs to the unit disk: a2
j,1 + a2

j,2 ≤ 1.
It is closed to the unit circle if aj,3, . . . ,aj,p are nearly zero.
In that case, Xj is well-represented by C1,C2.
This is the circle of correlations for components (1, 2).
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Results interpretation

Interpretation of principal components

●

0.0 0.5 1.0 1.5 2.0 2.5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

Variables factor map (PCA)

Dim 1 (86.29%)

D
im

 2
 (

12
.8

1%
)

janv

fevr

mars

avri

mai

juin

juil

aout

sept

octo

nove

dece

Coordinates of the variables in the orthonormal basis of principal variables. We see again that
Axis 1 weigths all months nearly equally, whereas Axis 2 exhibits a contrast summer / winter.
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Results interpretation

Interpretation of principal components
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Circle of correlation (normalized variables). Here all variables are well-represented by the first 2
principal components.
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Results interpretation

Graphics for variables

Exercise
Check that Uk is the k -th column of the matrix U of the SVD
decomposition of X (see slide 21).
Check that the coordinate of Xj onto Uk is aj,k = (vk )j

√
λk .

Explain the link between the circle of correlation and the plot of
eigenvectors coordinates (slides 31 and 35).
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Conclusion and further readings

Conclusion and further readings

PCA is a dimension reduction technique which finds
uncorrelated variables, called principal variables, that are
linear combination of the original ones, which approximate the
best the data in the mean-square sense.

PCA = spectral decomposition of the covariance matrix
I Up to isometric transformations (metric, weights)

Several graphs can be used to interpret principal components:
projection of individuals, circle of correlation (normalized case).

I Mind that what you visualize is only a projection. Several tools
quantify the quality of the representation.
→ See textbook page 29, 30.
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