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Position of the slides / textbook

Linear Discriminant Analysis (PCA) can be viewed either:

@ As a technique to discover classes in data (Fisher’s analysis)
@ As a probabilistic linear method for classification (prediction)

These slides presents these two facets.
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Linear Discriminant Analysis (LDA): Outline

@ Figures only!
9 LDA as an exploratory tool: Theory

0 LDA as a classification tool: Theory
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LDA, as an exploratory tool

X2

-6 -4 -2 0 2 4 6
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This is a cloud of points, with two classes, in dimension 2 (higher in general).
Can you find two 1D axis ‘suitable’ to identify classes?
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LDA, as an exploratory tool

Individuals factor map (PCA)
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Result of the PCA analysis. Can we do better?
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LDA, as an exploratory tool
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Result of the LDA analysis. Actually a PCA for the centroids: two data only!
The two axes are orthogonal... for a specific (‘Mahalanobis’) metric!
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LDA, as an exploratory tool

X2

x1

Result of the LDA analysis: visualization for tranformed data.
The two axes are orthogonal for the usual metric.
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Mahalanobis metric and ‘sphered’ data
The Mahalanobis metric is such that the covariance matrix is identity.
This is equivalent to (matricially) reduce or ‘sphere’ the data:

X — Cov~1/2x
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Left: Original data. Right: Reduced data. Level sets are for the multinormal
distribution with corresponding covariance matrix.
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LDA, as a classification tool
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Case of equal group sizes: use sphered data (right) and predict by the class
of the nearest centroid (here defined by the line segment bisector).
N.B. This is not optimal when groups have different sizes.

To play with LDA with more than 2 classes, try the applet
https://roustant.shinyapps.io/lda—-app/
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A six dimensional example
Similarly to Fisher’s iris data (see notebook), we consider the Lubitsch
data for insects. There are 74 data, 6 variables, and 3 classes.
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A six dimensional example

Dim 2 (26.00%)

Individuals factor map (PCA)
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Insect dataset. Result of the PCA analysis.
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A six dimensional example
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Insect dataset. Result of the LDA analysis.
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LDA as an exploratory tool: Theory
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Notations and assumption

@ X: a matrix of size n x p, representing the data, partitioned in m

classes Q1,...,Qm of size ny, ..., Ny:
| | x ... x/ xP || Class |
X1 X X} xP 1
1 j p
Xp, X}, X, Xh, 1
1 ] P
Xn—np+1 || Xn—ppt1 - Xn_pptt X A1 m
Xn x) .. x xP m
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Notations and assumption

@ G: a matrix of size m x p, containing the centroids (centor of
gravity) of each class: g, = nle Yiea,Xi (U=1,...,m)

| | x* ... x¥ ... xP|Class |

ool & . F 1
anll gy ... gn ... b m

Lgn | g g A |
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Notations and assumption
@ G: a matrix of size m x p, containing the centroids (centor of

gravity) of each class: gf:nleZiemxi (¢=1,....,m)
| [ x* ... ¥ ... xP|[Class |
o9 . g . ] 1]
Omloh o G . g m

@ Notice that the average of the centroids, weighted by class sizes,
coincides with the centroid g of the whole dataset:

SRS B 0 B U
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Notations and assumption
@ G: a matrix of size m x p, containing the centroids (centor of

gravity) of each class: gf:nleZiemxi (¢=1,....,m)
| [ x* ... ¥ ... xP|[Class |
o9 . g . ] 1]
Omloh o G . g m

@ Notice that the average of the centroids, weighted by class sizes,
coincides with the centroid g of the whole dataset:

m n
B S A RO BT Y.
n N\, N3

@ We assume that g = 0, i.e. the data have been centered.
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Notations and assumption

@ B: ‘between-class’ covariance matrix. It is the covariance matrix
of the centroids, weighted by class sizes.

m
B=> 0w
/=1

Olivier Roustant, INSA Toulouse February 10, 2022 16/33



Notations and assumption

@ B: ‘between-class’ covariance matrix. It is the covariance matrix
of the centroids, weighted by class sizes.

m
B=> 0w
/=1

@ W : ‘within-class’ covariance matrix. It is the covariance matrix of
departures to centroids.

W=— ZZ —g0)(xi—g0)"

=3 i€,
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Notations and assumption

@ B: ‘between-class’ covariance matrix. It is the covariance matrix
of the centroids, weighted by class sizes.

m
B= Z ngge
=1

@ W : ‘within-class’ covariance matrix. It is the covariance matrix of
departures to centroids.

W= Z Z —ge)(xi — g’
= ica,
Notice that W = > , & (né > ica, (Xi —9o)(X; — gg)T> is the
(weighted) average of the covariance matrices in each class.

The same within-class covariance matrix is used for all
classes — (group) homoscedasticity assumption.
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Variance decomposition for classes

Property (variance decomposition)
Let S= 157  x;x] be the covariance matrix of the data. Then,

S=B+W

'This is similar to the formula E(Z?) = Var(Z) + E(Z)?. To prove it, expand the left
hand site by writing X; = (X; — g¢) + g¢, and remark that -, (X; —g¢) = 0.
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Variance decomposition for classes

Property (variance decomposition)
Let S= 157  x;x] be the covariance matrix of the data. Then,

S=B+W
Proof. Consider one class ¢ € {1,..., m}. Then, we have':
1 1
XX =Y (xi—g)(xi—9) +9:9/ (1)
‘ica, ieQy

'This is similar to the formula E(Z?) = Var(Z) + E(Z)?. To prove it, expand the left
hand site by writing X; = (X; — g¢) + g¢, and remark that -, (X; —g¢) = 0.
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Variance decomposition for classes

Property (variance decomposition)

Let S= 137 . x;x| be the covariance matrix of the data. Then,

S=B+W

Proof. Consider one class ¢ € {1,...,m}. Then, we have':

*ZXX Z*Z —9) +9:9] (1)

IEQZ IEQ@

Now, multiplying (1) by ¢ and summing w.r.t. £ gives: S =W + B.

'This is similar to the formula E(Z?) = Var(Z) + E(Z)?. To prove it, expand the left

hand site by writing X; = (X; — g¢) + g¢, and remark that -, (X; —g¢) = 0.
February 10, 2022 17/33
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Problem formulation

The problem (Fisher’s approach)
Find a linear combination a{ X maximizing the between-class variance
relatively to the within-class variance:
, a'Ba
maXx ———
a a'Wa

Once a; found, find ao, W-orthogonal to a;, maximizing that ratio.
Once a, found, find a3, W-orthogonal to a1, as, maximizing the ratio.

N.B. We recall that a and b are W-orthogonal ifa" Wb = 0.
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Main result

Theorem (LDA solution)
The solution of LDA is obtained in two steps:
@ Sphere the data with Mahalanobis metric: x — W—1/2x

@ Do PCA on the (sphered) centroids W—1/2g4,...,W—1/2g,,
— eigenvectors aj, ..., aj,

The new variables XW~"/2a; are called discriminant variables.
The a, = W~"/2a; are the discriminant coordinates.
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Main result (proof)

@ First observe that when W = I, then LDA = PCA on the centroids,
weighted by class sizes.
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Main result (proof)

@ First observe that when W = I, then LDA = PCA on the centroids,
weighted by class sizes.
Indeed, the numerator of the criterion (Rayleigh ratio) is equal to
the variance (inertia) of the projections a g, with weights 7:

m m
T U R Ne 1. \2
a Ba= a a= a .
;_1 n 909, ;_1 n( )
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Main result (proof)

@ First observe that when W = I, then LDA = PCA on the centroids,
weighted by class sizes.
Indeed, the numerator of the criterion (Rayleigh ratio) is equal to
the variance (inertia) of the projections a g, with weights 7:

m m
T U R Ne 1. \2
a Ba= a a= a .
;_1 n 909, ;_1 n( )

The denominator is a' a is the squared norm of a.
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Main result (proof)

@ First observe that when W = I, then LDA = PCA on the centroids,
weighted by class sizes.
Indeed, the numerator of the criterion (Rayleigh ratio) is equal to
the variance (inertia) of the projections a' g, with weights &

m m
T U R Ne 1. \2
a Ba= a a= a .
;1 n 909, ;1 n( )

The denominator is a'a is the squared norm of a. Hence, a; is
found by solving the PCA problem:

a Ba la(g dm)
maxX ——— = max e .
a ala afajo1 oI
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Main result (proof)

@ First observe that when W = I, then LDA = PCA on the centroids,
weighted by class sizes.
Indeed, the numerator of the criterion (Rayleigh ratio) is equal to
the variance (inertia) of the projections a' g, with weights &

m m
T Ne T+ T Ne, 1 12
a Ba= —a a= —(a .
;1 n 909, ;1 n( ar)

The denominator is a'a is the squared norm of a. Hence, a; is
found by solving the PCA problem:

a Ba la(9 9m)
maX ——— = max . .
a ala afajo1 oI
The same is true for ap, . . . ,an, since W-orthog. = orthog.
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Main result (proof)

@ Then, the idea is to sphere the data in order to have a identity
within-class covariance matrix. This is obtained with x — W~1/2x :
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Main result (proof)

@ Then, the idea is to sphere the data in order to have a identity
within-class covariance matrix. This is obtained with x — W~1/2x :

geznlzzxi —

i€y
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Main result (proof)

@ Then, the idea is to sphere the data in order to have a identity
within-class covariance matrix. This is obtained with x — W~1/2x :

0= Y o o W W,

i€y IEQ[
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Main result (proof)
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Main result (proof)

@ Then, the idea is to sphere the data in order to have a identity
within-class covariance matrix. This is obtained with x — W~1/2x :

0= Y o o W W,

i€y IGQ[

—g — W 2(x;—gp)
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Main result (proof)

@ Then, the idea is to sphere the data in order to have a identity
within-class covariance matrix. This is obtained with x — W~1/2x :

0= Y o o W W,

i€y IGQ@

—g — W 2(x;—gp)

W= ,1—7 MY xi—g)xi—g)" —

/=1 iEQ[
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Main result (proof)

@ Then, the idea is to sphere the data in order to have a identity
within-class covariance matrix. This is obtained with x — W~1/2x :

Zx, — —ZW_1/2X— —1/2g,

lEQg IGQe

Xi—g9 — W2(x;—g)
1 m
W=_S S (-g)x-g)’ - WIEWW 2

/=1 iEQ[
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Main result (proof)

@ Then, the idea is to sphere the data in order to have a identity
within-class covariance matrix. This is obtained with x — W~1/2x :

gezlzxi — —ZW_1/2x— ~1/2g,

i€y IGQ@

Xi—gr — W 2(x;—gp)
1 m
W= z_: S xi—g)xi—g)" — WTRWWZ=],
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Main result (proof)

@ Then, the idea is to sphere the data in order to have a identity
within-class covariance matrix. This is obtained with x — W~1/2x :

gzzlzxi — —ZW_1/2x— ~1/2g,

i€y IGQ@

Xi—ge — W2 - gy)
1 m
W= z_: S xi—g)xi—g)" — WTRWWZ=],

m
n, _ _
B=> —gq/ — W'/BW '/
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Main result (proof)
@ Consequently, PCA for the sphered centroids is written

a*T(W—1/2Bw—1 /Z)a*

*

aj = argmax,.

Olivier Roustant, INSA Toulouse February 10, 2022 22/33



Main result (proof)

@ Consequently, PCA for the sphered centroids is written

a*T(W—1/2Bw—1/2)a*

a; = argmaxy« a*Ta*
. a*T(W—1/2Bw—1/2)a*
a = argmaxa*@uq a*Ta*
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Main result (proof)

@ Consequently, PCA for the sphered centroids is written

a*T(W—1/2Bw—1/2)a*

aj = argmax,.

a*Ta*
. a*T(W—1/2Bw—1/2)a*
a = argmaxa*7aua7 a*Ta*

@ Now, reparametrize this optimization problem on a* with
a = W—'/2a*, This gives the LDA problem:

Olivier Roustant, INSA Toulouse February 10, 2022 22/33



Main result (proof)

@ Consequently, PCA for the sphered centroids is written

a*T(W—1/2Bw—1/2)a*

aj = argmax,.

a*Ta*
. a*T(W—1/2Bw—1/2)a*
a = argmaxa*7aua7 a*Ta*

@ Now, reparametrize this optimization problem on a* with
a = W—'/2a*, This gives the LDA problem:
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Main result (proof)

@ Consequently, PCA for the sphered centroids is written

a*T(W71/ZBW71/2)a*

a; = argmaxy« aTar
. a*T(W—1/2Bw—1/2)a*
a = argmaxa*7aua7 aTar

@ Now, reparametrize this optimization problem on a* with
a = W—'/2a*. This gives the LDA problem:

a'Ba
2a’Wa
a'Ba
a,alway aTWa e

a; = argmax
a, = argmax
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Remarks

@ In the textbook B, W are denoted S¢, S;, in order to emphasize
that they correspond to estimators (of unknown proba. objects).
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Remarks

@ In the textbook B, W are denoted S¢, S;, in order to emphasize
that they correspond to estimators (of unknown proba. objects).

@ Link between the diagonalization of the symmetric matrix
W-1/2BW~"/2 and the diagonalization of the matrix BW—':

W-/2BW-"/2a* = xa* < BW '/2a* = \W'/2a*
& BW(W'/2a%) = \(W'/2a%)
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LDA, exploration: Recap

@ LDA finds linear combinations of coordinates that maximize the
between-class variance relatively to the within-class variance.

@ LDA is equivalent to do PCA of the centroids with Mahalanobis
metric, i.e. PCA on sphered centroids.
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LDA as a classification tool: Theory
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Case of classes of equal sizes

Original data Sphered data

x2

x1 x1

Visualization of the linear frontiers for LDA in the 2D case, when classes have
the same size. For sphered data, it is the Voronoi tesselation.

Test other configurations with the applet:
https://roustant.shinyapps.io/lda-app/
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Case of classes of equal sizes

When all classes have the same size, the optimal rule (see next slides)
for classification is to predict by the closest centroid for sphered data:

For a given X, choose £ such that (¢) = |W~"/2x — W~1/2g,|| is minimal.
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Case of classes of equal sizes

When all classes have the same size, the optimal rule (see next slides)
for classification is to predict by the closest centroid for sphered data:

For a given X, choose £ such that (¢) = |W~"/2x — W~1/2g,|| is minimal.
This gives the Voronoi tesselation of centroids in the sphered space:

For a given X, and given {1, {2, prefer ¢1 to {2 if §(¢1) < §(£2).
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Case of classes of equal sizes

@ In the sphered space, prediction frontiers are linear (defined by
bisector hyperplanes).
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Case of classes of equal sizes

@ In the sphered space, prediction frontiers are linear (defined by
bisector hyperplanes).

@ As x — W~'/2x is linear, frontiers remain linear in the original
space. This justifies the name “Linear” discriminant analysis.

Olivier Roustant, INSA Toulouse February 10, 2022 28/33



Case of classes of equal sizes

@ In the sphered space, prediction frontiers are linear (defined by
bisector hyperplanes).

@ As x — W~'/2x is linear, frontiers remain linear in the original
space. This justifies the name “Linear” discriminant analysis.

@ Exercise. Prove that the hyperplan equation is written:

5(51) = 5(52) 4
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Case of classes of equal sizes

@ In the sphered space, prediction frontiers are linear (defined by
bisector hyperplanes).

@ As x — W~'/2x is linear, frontiers remain linear in the original
space. This justifies the name “Linear” discriminant analysis.

@ Exercise. Prove that the hyperplan equation is written:

5(t1) =0(t2) < 2(gr, —9s) W 'x=g, W g, —g,W g,

Olivier Roustant, INSA Toulouse February 10, 2022 28/33



General case, probabilistic approach

In the general case, we need to rely on a more probabilistic approach.
We consider the following Gaussian mixture model.

Let G a discrete random variables on {1, ..., m} with P(G = ¢) = .
Let X a random vector of RP, such that

X|G=1/{~N(gs,,Wy)

with g, € RP and W, a covariance matrix (¢ =1,..., m).
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General case, probabilistic approach

In the general case, we need to rely on a more probabilistic approach.
We consider the following Gaussian mixture model.

Let G a discrete random variables on {1, ..., m} with P(G = ¢) = .
Let X a random vector of RP, such that

X|G=1/{~N(gs,,Wy)

with g, € RP and W, a covariance matrix (¢ =1,..., m).

Exercice. Show that X admits the density fx(x) = >y mefxjg=(X).
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General case, probabilistic approach

@ Recall the Bayes classifier optimal rule for probabilistic models:

For a given X, choose ¢ such that P(G = ¢|X = x) is maximal.
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General case, probabilistic approach

@ Recall the Bayes classifier optimal rule for probabilistic models:

For a given X, choose ¢ such that P(G = ¢|X = x) is maximal.

@ Reminder: Bayes theorem, when P(A) # 0: P(BJA) = %.
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General case, probabilistic approach

@ Recall the Bayes classifier optimal rule for probabilistic models:

For a given X, choose ¢ such that P(G = ¢|X = x) is maximal.

@ Reminder: Bayes theorem, when P(A) # 0: P(B|A) = %.

@ In our context (G discrete, X continuous), Bayes theorem is:

P(G=(X=x)= f*""‘“%‘; = 0)
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General case, probabilistic approach

@ Thus the classification rule for the Gaussian mixture model is:

For a given X, choose ¢ such that fx|g—(X)m, is maximal.

Olivier Roustant, INSA Toulouse February 10, 2022 31/33



General case, probabilistic approach

@ Thus the classification rule for the Gaussian mixture model is:

For a given X, choose ¢ such that fx;g—,(X)m, is maximal.
@ Equivalently, this defines a tesselation of the space:

For a given X, and given ¢1, {o,

Prefer /1 to ¢ if fX\G:& (X)7I'g1 > f)(|(;;:g2 (X)Trgz.
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General case, probabilistic approach

Exercise.
@ Show that the conditional log-density is the quadratic polynomial

—2log fxjg=¢(X) = dlog(27) + log |W,|+ (x —g¢) "W, ' (x - gr)

Deduce that the classification rule gives quadratic frontiers, and
compute its equation. This is quadratic discriminant analysis.

@ Now, assume homoscedasticity: W, = W for all ¢, which is the
main assumption of linear discriminant analysis. Then show that
the classification rule is written

5(t4)? = 2log(ms,) = (l2)? — 2log(m,).

Explain why the frontiers are now linear. What is the difference
with the non-probabilistic approach (Voronoi tesselation)?
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LDA, prediction: Recap

@ In general, Bayes rule gives quadratic prediction frontiers
— quadratic discriminant analysis

@ Under homoscedasticity, frontiers become linear
— linear discriminant analysis

@ For LDA, the rule is to choose the closest centroid for sphered
data, enhanced by the term —2log(7), linked to class size. When
7y does not depend on /, it comes down to choose the closest
centroid for shered data.
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