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Position of the slides / textbook

Linear Discriminant Analysis (PCA) can be viewed either:

As a technique to discover classes in data (Fisher’s analysis)
As a probabilistic linear method for classification (prediction)

These slides presents these two facets.
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Linear Discriminant Analysis (LDA): Outline

1 Figures only!

2 LDA as an exploratory tool: Theory

3 LDA as a classification tool: Theory
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Figures only!

LDA, as an exploratory tool
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This is a cloud of points, with two classes, in dimension 2 (higher in general).
Can you find two 1D axis ‘suitable’ to identify classes?
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Figures only!

LDA, as an exploratory tool
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Result of the PCA analysis. Can we do better?

Olivier Roustant, INSA Toulouse Exploratory analysis February 10, 2022 5 / 33



Figures only!

LDA, as an exploratory tool
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Result of the LDA analysis. Actually a PCA for the centroids: two data only!
The two axes are orthogonal... for a specific (‘Mahalanobis’) metric!
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Figures only!

LDA, as an exploratory tool
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Result of the LDA analysis: visualization for tranformed data.
The two axes are orthogonal for the usual metric.
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Figures only!

Mahalanobis metric and ‘sphered’ data
The Mahalanobis metric is such that the covariance matrix is identity.
This is equivalent to (matricially) reduce or ‘sphere’ the data:
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Left: Original data. Right: Reduced data. Level sets are for the multinormal
distribution with corresponding covariance matrix.
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Figures only!

LDA, as a classification tool
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To play with LDA with more than 2 classes, try the applet
https://roustant.shinyapps.io/lda-app/
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Figures only!

A six dimensional example
Similarly to Fisher’s iris data (see notebook), we consider the Lubitsch
data for insects. There are 74 data, 6 variables, and 3 classes.
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A six dimensional example
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A six dimensional example
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LDA as an exploratory tool: Theory

Notations and assumption

X: a matrix of size n × p, representing the data, partitioned in m
classes Ω1, . . . ,Ωm of size n1, . . . ,nm:

x1 . . . xj . . . xp Class

x1 x1
1 . . . x j

1 . . . xp
1 1

...
...

...
...

...
xn1 x1

n1
. . . x j

n1
. . . xp

n1
1

...
...

...
...

...

xn−nm+1 x1
n−nm+1 . . . x j

n−nm+1 . . . xp
n−nm+1 m

...
...

...
...

...
xn x1

n . . . x j
n . . . xp

n m
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LDA as an exploratory tool: Theory

Notations and assumption

G: a matrix of size m × p, containing the centroids (centor of
gravity) of each class: g` = 1

n`

∑
i∈Ω`

xi (` = 1, . . . ,m)

x1 . . . xj . . . xp Class

g1 g1
1 . . . g j

1 . . . gp
1 1

...
...

...
...

...

gm g1
m . . . g j

m . . . gp
m m

Notice that the average of the centroids, weighted by class sizes,
coincides with the centroid g of the whole dataset:

m∑
`=1

n`

n
g` =

m∑
`=1

n`

n

 1
n`

∑
i∈Ω`

xi

 =
1
n

n∑
i=1

xi = g

We assume that g = 0, i.e. the data have been centered.
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LDA as an exploratory tool: Theory

Notations and assumption

B: ‘between-class’ covariance matrix. It is the covariance matrix
of the centroids, weighted by class sizes.

B =
m∑
`=1

n`

n
g`g>`

W : ‘within-class’ covariance matrix. It is the covariance matrix of
departures to centroids.

W =
1
n

m∑
`=1

∑
i∈Ω`

(xi − g`)(xi − g`)
>

Notice that W =
∑m

`=1
n`
n

(
1
n`

∑
i∈Ω`

(xi − g`)(xi − g`)
>
)

is the
(weighted) average of the covariance matrices in each class.
The same within-class covariance matrix is used for all
classes→ (group) homoscedasticity assumption.

Olivier Roustant, INSA Toulouse Exploratory analysis February 10, 2022 16 / 33



LDA as an exploratory tool: Theory

Notations and assumption

B: ‘between-class’ covariance matrix. It is the covariance matrix
of the centroids, weighted by class sizes.

B =
m∑
`=1

n`

n
g`g>`

W : ‘within-class’ covariance matrix. It is the covariance matrix of
departures to centroids.

W =
1
n

m∑
`=1

∑
i∈Ω`

(xi − g`)(xi − g`)
>

Notice that W =
∑m

`=1
n`
n

(
1
n`

∑
i∈Ω`

(xi − g`)(xi − g`)
>
)

is the
(weighted) average of the covariance matrices in each class.
The same within-class covariance matrix is used for all
classes→ (group) homoscedasticity assumption.

Olivier Roustant, INSA Toulouse Exploratory analysis February 10, 2022 16 / 33



LDA as an exploratory tool: Theory

Notations and assumption

B: ‘between-class’ covariance matrix. It is the covariance matrix
of the centroids, weighted by class sizes.

B =
m∑
`=1

n`

n
g`g>`

W : ‘within-class’ covariance matrix. It is the covariance matrix of
departures to centroids.

W =
1
n

m∑
`=1

∑
i∈Ω`

(xi − g`)(xi − g`)
>

Notice that W =
∑m

`=1
n`
n

(
1
n`

∑
i∈Ω`

(xi − g`)(xi − g`)
>
)

is the
(weighted) average of the covariance matrices in each class.
The same within-class covariance matrix is used for all
classes→ (group) homoscedasticity assumption.

Olivier Roustant, INSA Toulouse Exploratory analysis February 10, 2022 16 / 33



LDA as an exploratory tool: Theory

Variance decomposition for classes

Property (variance decomposition)

Let S = 1
n
∑n

i=1 xix>i be the covariance matrix of the data. Then,

S = B + W

Proof. Consider one class ` ∈ {1, . . . ,m}. Then, we have1:

1
n`

∑
i∈Ω`

xix>i =
1
n`

∑
i∈Ω`

(xi − g`)(xi − g`)
> + g`g>` (1)

Now, multiplying (1) by n`
n and summing w.r.t. ` gives: S = W + B.

1This is similar to the formula E(Z 2) = Var(Z ) + E(Z )2. To prove it, expand the left
hand site by writing xi = (xi − g`) + g`, and remark that

∑
i∈Ω`

(xi − g`) = 0.
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LDA as an exploratory tool: Theory

Problem formulation

The problem (Fisher’s approach)

Find a linear combination a>1 X maximizing the between-class variance
relatively to the within-class variance:

max
a

a>Ba
a>Wa

Once a1 found, find a2, W-orthogonal to a1, maximizing that ratio.
Once a2 found, find a3, W-orthogonal to a1,a2, maximizing the ratio.
...

N.B. We recall that a and b are W-orthogonal if a>Wb = 0.
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LDA as an exploratory tool: Theory

Main result

Theorem (LDA solution)
The solution of LDA is obtained in two steps:

Sphere the data with Mahalanobis metric: x→W−1/2x
Do PCA on the (sphered) centroids W−1/2g1, . . . ,W−1/2gm
→ eigenvectors a∗1, . . . ,a

∗
m

The new variables XW−1/2a∗` are called discriminant variables.
The a` = W−1/2a∗` are the discriminant coordinates.
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LDA as an exploratory tool: Theory

Main result (proof)

First observe that when W = Ip, then LDA = PCA on the centroids,
weighted by class sizes.

Indeed, the numerator of the criterion (Rayleigh ratio) is equal to
the variance (inertia) of the projections a>g` with weights n`

n :

a>Ba =
m∑
`=1

n`

n
a>g`g>` a =

m∑
`=1

n`

n
(a>g`)

2.

The denominator is a>a is the squared norm of a. Hence, a1 is
found by solving the PCA problem:

max
a

a>Ba
a>Ipa

= max
a,‖a‖=1

Ia(g1, . . . ,gm).

The same is true for a2, . . . ,am, since W-orthog. = orthog.
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LDA as an exploratory tool: Theory

Main result (proof)

Then, the idea is to sphere the data in order to have a identity
within-class covariance matrix. This is obtained with x→W−1/2x :

g` =
1
n`

∑
i∈Ω`

xi →
1
n`

∑
i∈Ω`

W−1/2xi = W−1/2g`

xi − g` → W−1/2(xi − g`)

W =
1
n

m∑
`=1

∑
i∈Ω`

(xi − g`)(xi − g`)
> → W−1/2(W)W−1/2 = Ip

B =
m∑
`=1

n`

n
g`g>` → W−1/2BW−1/2
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LDA as an exploratory tool: Theory

Main result (proof)

Consequently, PCA for the sphered centroids is written

a∗1 = argmaxa∗
a∗>(W−1/2BW−1/2)a∗

a∗>a∗

a∗2 = argmaxa∗,a∗⊥a∗1

a∗>(W−1/2BW−1/2)a∗

a∗>a∗
. . .

Now, reparametrize this optimization problem on a∗ with
a = W−1/2a∗. This gives the LDA problem:

a1 = argmaxa
a>Ba
a>Wa

a2 = argmaxa,a⊥Wa1

a>Ba
a>Wa

. . .
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LDA as an exploratory tool: Theory

Remarks

In the textbook B,W are denoted Se,Sr , in order to emphasize
that they correspond to estimators (of unknown proba. objects).

Link between the diagonalization of the symmetric matrix
W−1/2BW−1/2 and the diagonalization of the matrix BW−1:

W−1/2BW−1/2a∗ = λa∗ ⇔ BW−1/2a∗ = λW1/2a∗

⇔ BW−1(W1/2a∗) = λ(W1/2a∗)
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LDA as an exploratory tool: Theory

LDA, exploration: Recap

LDA finds linear combinations of coordinates that maximize the
between-class variance relatively to the within-class variance.

LDA is equivalent to do PCA of the centroids with Mahalanobis
metric, i.e. PCA on sphered centroids.

Olivier Roustant, INSA Toulouse Exploratory analysis February 10, 2022 24 / 33



LDA as a classification tool: Theory

LDA as a classification tool: Theory

Olivier Roustant, INSA Toulouse Exploratory analysis February 10, 2022 25 / 33



LDA as a classification tool: Theory

Case of classes of equal sizes
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Visualization of the linear frontiers for LDA in the 2D case, when classes have
the same size. For sphered data, it is the Voronoi tesselation.

Test other configurations with the applet:
https://roustant.shinyapps.io/lda-app/
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LDA as a classification tool: Theory

Case of classes of equal sizes

When all classes have the same size, the optimal rule (see next slides)
for classification is to predict by the closest centroid for sphered data:

For a given x, choose ` such that δ(`) = ‖W−1/2x−W−1/2g`‖ is minimal.

This gives the Voronoi tesselation of centroids in the sphered space:

For a given x, and given `1, `2, prefer `1 to `2 if δ(`1) ≤ δ(`2).
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LDA as a classification tool: Theory

Case of classes of equal sizes

In the sphered space, prediction frontiers are linear (defined by
bisector hyperplanes).

As x→W−1/2x is linear, frontiers remain linear in the original
space. This justifies the name “Linear” discriminant analysis.
Exercise. Prove that the hyperplan equation is written:

δ(`1) = δ(`2) ⇔ 2(g`1 − g`2)>W−1x = g>`1
W−1g`1 − g>`2

W−1g`2
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LDA as a classification tool: Theory

General case, probabilistic approach

In the general case, we need to rely on a more probabilistic approach.
We consider the following Gaussian mixture model.

Let G a discrete random variables on {1, . . . ,m} with P(G = `) = π`.
Let X a random vector of Rp, such that

X|G = ` ∼ N (g`,W`)

with g` ∈ Rp and W` a covariance matrix (` = 1, . . . ,m).

Exercice. Show that X admits the density fX(x) =
∑m

`=1 π`fX|G=`(x).
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LDA as a classification tool: Theory

General case, probabilistic approach

Recall the Bayes classifier optimal rule for probabilistic models:

For a given x, choose ` such that P(G = `|X = x) is maximal.

Reminder: Bayes theorem, when P(A) 6= 0: P(B|A) = P(A|B)P(B)
P(A) .

In our context (G discrete, X continuous), Bayes theorem is:

P(G = `|X = x) =
fX|G=`(x)P(G = `)

fX(x)
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LDA as a classification tool: Theory

General case, probabilistic approach

Thus the classification rule for the Gaussian mixture model is:

For a given x, choose ` such that fX|G=`(x)π` is maximal.

Equivalently, this defines a tesselation of the space:

For a given x, and given `1, `2,

Prefer `1 to `2 if fX|G=`1(x)π`1 ≥ fX|G=`2(x)π`2 .
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LDA as a classification tool: Theory

General case, probabilistic approach

Exercise.
Show that the conditional log-density is the quadratic polynomial

−2 log fX|G=`(x) = d log(2π) + log |W`|+ (x− g`)
>W−1

` (x− g`)

Deduce that the classification rule gives quadratic frontiers, and
compute its equation. This is quadratic discriminant analysis.
Now, assume homoscedasticity: W` = W for all `, which is the
main assumption of linear discriminant analysis. Then show that
the classification rule is written

δ(`1)2 − 2 log(π`1) = δ(`2)2 − 2 log(π`2).

Explain why the frontiers are now linear. What is the difference
with the non-probabilistic approach (Voronoi tesselation)?
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LDA as a classification tool: Theory

LDA, prediction: Recap

In general, Bayes rule gives quadratic prediction frontiers
→ quadratic discriminant analysis

Under homoscedasticity, frontiers become linear
→ linear discriminant analysis

For LDA, the rule is to choose the closest centroid for sphered
data, enhanced by the term −2 log(π`), linked to class size. When
π` does not depend on `, it comes down to choose the closest
centroid for shered data.
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