tp-analyse-donnees/tp5-artificial-dataset.py

204 lines
8.6 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Dec 8 16:07:28 2021
@author: pfaure
"""
from numpy import arange
from myplotlib import print_1d_data
from mydatalib import (extract_data_txt, scale_data, apply_kmeans,
apply_agglomerative_clustering, apply_DBSCAN,
apply_mean_shift, evaluate)
path = './new-data/'
dataset_name_list = ["d32", "d64"]
#eps_list = [0.6, 0.75, 0.2, 0.8, 0.8]
eps_list = [0.8, 0.8]
save = True
for i in range(0, 2):
dataset_name = dataset_name_list[i]
eps = eps_list[i]
print("-----------------------------------------------------------")
print(" Chargement du dataset : " + dataset_name)
data = extract_data_txt(path + dataset_name)
print("-----------------------------------------------------------")
print(" Mise à l'échelle")
data_scaled = scale_data(data)
k_max = 10
print("-----------------------------------------------------------")
print(" Application de k-means")
# Application de k-means pour plusieurs valeurs de k
# et evaluation de la solution
k = []
durations = []
silouettes = []
daviess = []
calinskis = []
inerties = []
iterations = []
for i in range(2, k_max):
# Application de k-means
(model, duration) = apply_kmeans(data_scaled, k=i, init="k-means++")
# Evaluation de la solution de clustering
(silouette, davies, calinski) = evaluate(data_scaled, model)
# Enregistrement des valeurs
k += [i]
durations += [duration]
silouettes += [silouette]
daviess += [davies]
calinskis += [calinski]
inerties += [model.inertia_]
iterations += [model.n_iter_]
# Affichage des résultats
print_1d_data(k, k, x_name="k", y_name="k", dataset_name=dataset_name,
method_name="k-means", stop=False, save=save)
print_1d_data(k, durations, x_name="k", y_name="temps_de_calcul", y_unit="ms",
dataset_name=dataset_name, method_name="k-means",
stop=False, save=save)
print_1d_data(k, silouettes, x_name="k", y_name="coeficient_de_silhouette",
dataset_name=dataset_name, method_name="k-means",
stop=False, save=save)
print_1d_data(k, daviess, x_name="k", y_name="coeficient_de_Davies",
dataset_name=dataset_name, method_name="k-means",
stop=False, save=save)
print_1d_data(k, calinskis, x_name="k", y_name="coeficient_de_Calinski",
dataset_name=dataset_name, method_name="k-means",
stop=False, save=save)
print_1d_data(k, inerties, x_name="k", y_name="inertie",
dataset_name=dataset_name, method_name="k-means",
stop=False, save=save)
print_1d_data(k, iterations, x_name="k", y_name="nombre_d_iterations",
dataset_name=dataset_name, method_name="k-means",
stop=True, save=save)
print("-----------------------------------------------------------")
print(" Création clusters : agglomerative ")
# Application du clustering agglomeratif pour plusieurs valeurs de k
# et evaluation de la solution
linkage = "ward"
k = []
durations = []
silouettes = []
daviess = []
calinskis = []
for i in range(2, k_max):
# Application du clustering agglomeratif
(model, duration) = apply_agglomerative_clustering(
data_scaled, k=i, linkage=linkage)
# Evaluation de la solution de clustering
(silouette, davies, calinski) = evaluate(data_scaled, model)
# Enregistrement des valeurs
k += [i]
durations += [duration]
silouettes += [silouette]
daviess += [davies]
calinskis += [calinski]
# Affichage des résultats
print_1d_data(k, k, x_name="k", y_name="k", dataset_name=dataset_name,
method_name="agglomerative_" + linkage, stop=False, save=save)
print_1d_data(k, durations, x_name="k", y_name="temps_de_calcul", y_unit="ms",
dataset_name=dataset_name,
method_name="agglomerative_" + linkage, stop=False, save=save)
print_1d_data(k, silouettes, x_name="k", y_name="coeficient_de_silhouette",
dataset_name=dataset_name,
method_name="agglomerative_" + linkage, stop=False, save=save)
print_1d_data(k, daviess, x_name="k", y_name="coeficient_de_Davies",
dataset_name=dataset_name,
method_name="agglomerative_" + linkage, stop=False, save=save)
print_1d_data(k, calinskis, x_name="k", y_name="coeficient_de_Calinski",
dataset_name=dataset_name,
method_name="agglomerative_" + linkage, stop=False, save=save)
min_sample_max = 30
print("-----------------------------------------------------------")
print(" Création clusters : DBSCAN")
params = []
for i in range(1, min_sample_max):
params += [(eps, i)]
durations = []
silouettes = []
daviess = []
calinskis = []
clusters = []
noise_points = []
for (distance, min_pts) in params:
# Application du clustering agglomeratif
(model, duration) = apply_DBSCAN(data_scaled, distance, min_pts)
cl_pred = model.labels_
# Evaluation de la solution de clustering
(silouette, davies, calinski) = evaluate(data_scaled, model)
# Enregistrement des valeurs
durations += [duration]
silouettes += [silouette]
daviess += [davies]
calinskis += [calinski]
clusters += [len(set(cl_pred)) - (1 if -1 in cl_pred else 0)]
noise_points += [list(cl_pred).count(-1)]
# Affichage des résultats
params = [str(i) for i in params]
print_1d_data(params, durations, x_name="(eps,min_pts)",
y_name="temps_de_calcul", y_unit="ms", dataset_name=dataset_name,
method_name="DBSCAN", stop=False, save=save)
print_1d_data(params, silouettes, x_name="(eps,min_pts)",
y_name="coeficient_de_silhouette", dataset_name=dataset_name,
method_name="DBSCAN", stop=False, save=save)
print_1d_data(params, daviess, x_name="(eps,min_pts)",
y_name="coeficient_de_Davies", dataset_name=dataset_name,
method_name="DBSCAN", stop=False, save=save)
print_1d_data(params, calinskis, x_name="(eps,min_pts)",
y_name="coeficient_de_Calinski", dataset_name=dataset_name,
method_name="DBSCAN", stop=False, save=save)
print_1d_data(params, clusters, x_name="(eps,min_pts)",
y_name="nombre_de_clusters", dataset_name=dataset_name,
method_name="DBSCAN", stop=False, save=save)
print_1d_data(params, noise_points, x_name="(eps,min_pts)",
y_name="points_de_bruit", dataset_name=dataset_name,
method_name="DBSCAN", stop=False, save=save)
print("-----------------------------------------------------------")
print(" Création clusters : mean-shift")
# Application de Affinity Propagation pour plusieurs valeurs de préférence
# et evaluation de la solution
k_max = 2
k = []
durations = []
silouettes = []
daviess = []
calinskis = []
for bandwidth in arange(0.1, k_max, 0.2):
# Application du clustering
(model, duration) = apply_mean_shift(
data_scaled, bandwidth=bandwidth)
# Evaluation de la solution de clustering
(silouette, davies, calinski) = evaluate(data_scaled, model)
# Enregistrement des valeurs
k += [bandwidth]
durations += [duration]
silouettes += [silouette]
daviess += [davies]
calinskis += [calinski]
# Affichage des résultats
print_1d_data(k, k, x_name="k", y_name="k", dataset_name=dataset_name,
method_name="mean-shift", stop=False, save=save)
print_1d_data(k, durations, x_name="k", y_name="temps_de_calcul", y_unit="ms",
dataset_name=dataset_name,
method_name="mean-shift", stop=False, save=save)
print_1d_data(k, silouettes, x_name="k", y_name="coeficient_de_silhouette",
dataset_name=dataset_name,
method_name="mean-shift", stop=False, save=save)
print_1d_data(k, daviess, x_name="k", y_name="coeficient_de_Davies",
dataset_name=dataset_name,
method_name="mean-shift", stop=False, save=save)
print_1d_data(k, calinskis, x_name="k", y_name="coeficient_de_Calinski",
dataset_name=dataset_name,
method_name="mean-shift", stop=False, save=save)