#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Dec 8 16:07:28 2021 @author: pfaure """ from sklearn.neighbors import NearestNeighbors import numpy as np from myplotlib import print_1d_data, print_2d_data from mydatalib import extract_data_txt, scale_data path = './new-data/' dataset_name = "w2" save = False print("-----------------------------------------------------------") print(" Chargement du dataset : " + dataset_name) data = extract_data_txt(path + dataset_name) print(data) print_2d_data(data, dataset_name=dataset_name + "_brutes", stop=False, save=save) print("-----------------------------------------------------------") print(" Mise à l'échelle") data_scaled = scale_data(data) print_2d_data(data_scaled, dataset_name=dataset_name + "_scaled", stop=False, save=save) print("-----------------------------------------------------------") print(" Calcul du voisinage") n = 50 neighbors = NearestNeighbors(n_neighbors=n) neighbors.fit(data_scaled) distances, indices = neighbors.kneighbors(data_scaled) distances = list(map(lambda x: sum(x[1:n-1])/(len(x)-1), distances)) distances = np.sort(distances, axis=0) print_1d_data(distances, range(1, len(distances)+1), x_name="distance_moyenne", y_name="nombre_de_points", stop=False, save=save)