#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Dec 3 16:29:12 2021 @author: pfaure """ from scipy.io import arff import numpy as np import time from sklearn import cluster, metrics, preprocessing def extract_data_2d(data_path): databrut = arff.loadarff(open(data_path + ".arff", 'r')) return np.array([[x[0], x[1]] for x in databrut[0]]) def extract_data_3d(data_path): databrut = arff.loadarff(open(data_path + ".arff", 'r')) return np.array([[x[0], x[1], x[2]] for x in databrut[0]]) def scale_data(data): scaler = preprocessing.StandardScaler() return scaler.fit_transform(data) def apply_kmeans(data, k: int = 3, init="k-means++"): tps1 = time.time() model = cluster.KMeans(n_clusters=k, init=init) model.fit(data) tps2 = time.time() return (model, round((tps2 - tps1)*1000, 2)) def apply_agglomerative_clustering(data, k: int = 3, linkage="complete"): tps1 = time.time() model = cluster.AgglomerativeClustering( n_clusters=k, affinity='euclidean', linkage=linkage) model.fit(data) tps2 = time.time() return (model, round((tps2 - tps1)*1000, 2)) def apply_DBSCAN(data, eps, min_pts): tps1 = time.time() model = cluster.DBSCAN(eps=eps, min_samples=min_pts) model.fit(data) tps2 = time.time() return (model, round((tps2 - tps1)*1000, 2)) def evaluate(data, model): try: silh = metrics.silhouette_score(data, model.labels_) davies = metrics.davies_bouldin_score(data, model.labels_) calinski = metrics.calinski_harabasz_score(data, model.labels_) return (silh, davies, calinski) except ValueError: return (None, None, None)