diff --git a/tp6-preprocessing b/tp6-preprocessing deleted file mode 100644 index 4aa01ec..0000000 --- a/tp6-preprocessing +++ /dev/null @@ -1,40 +0,0 @@ -#!/usr/bin/env python3 -# -*- coding: utf-8 -*- -""" -Created on Sun Jan 9 11:12:30 2022 - -@author: pfaure -""" -from sklearn.neighbors import NearestNeighbors -import numpy as np - -from myplotlib import print_1d_data, print_2d_data -from mydatalib import extract_data_csv, scale_data - -path = './new-data/' -dataset_name = "pluie" -save = False - -print("-----------------------------------------------------------") -print(" Chargement du dataset : " + dataset_name) -(villes, data) = extract_data_csv(path + dataset_name, 13, 13) -print(data) -# print_2d_data(data, dataset_name=dataset_name + -# "_brutes", stop=False, save=save) - -print("-----------------------------------------------------------") -print(" Mise à l'échelle") -data_scaled = scale_data(data) -# print_2d_data(data_scaled, dataset_name=dataset_name + -# "_scaled", stop=False, save=save) - -print("-----------------------------------------------------------") -print(" Calcul du voisinage") -n = 5 -neighbors = NearestNeighbors(n_neighbors=n) -neighbors.fit(data_scaled) -distances, indices = neighbors.kneighbors(data_scaled) -distances = list(map(lambda x: sum(x[1:n-1])/(len(x)-1), distances)) -distances = np.sort(distances, axis=0) -print_1d_data(distances, range(1, len(distances)+1), x_name="distance_moyenne", - y_name="nombre_de_points", stop=False, save=save) diff --git a/tp-preprocessing b/tp6-preprocessing.py similarity index 100% rename from tp-preprocessing rename to tp6-preprocessing.py