BE-GRAPH/src/test/org/insa/algo/utils/BinaryHeapTest.java
2018-03-26 12:27:57 +02:00

236 lines
7.3 KiB
Java

package org.insa.algo.utils;
import static org.junit.Assert.assertEquals;
import static org.junit.Assert.assertFalse;
import static org.junit.Assert.assertTrue;
import java.util.Arrays;
import java.util.HashSet;
import java.util.stream.IntStream;
import org.junit.Before;
import org.junit.Test;
public class BinaryHeapTest {
class MutableInteger implements Comparable<MutableInteger> {
// Actual value
private int value;
public MutableInteger(int value) {
this.value = value;
}
/**
* @return The integer value stored inside this MutableInteger.
*/
public int get() {
return this.value;
}
/**
* Update the integer value stored inside this MutableInteger.
*
* @param value New value to set.
*/
public void set(int value) {
this.value = value;
}
@Override
public int compareTo(MutableInteger other) {
return Integer.compare(this.value, other.value);
}
};
// Raw data arrays.
private MutableInteger[] data1 = IntStream.range(0, 20).mapToObj(MutableInteger::new)
.toArray(MutableInteger[]::new);
private MutableInteger[] data2 = Arrays.stream(new int[] { 8, 1, 6, 3, 4, 5, 9 })
.mapToObj(MutableInteger::new).toArray(MutableInteger[]::new);
// Actual heap.
private BinaryHeap<MutableInteger> heap1, heap2;
@Before
public void init() {
// Create the range heap
this.heap1 = new BinaryHeap<>();
this.heap2 = new BinaryHeap<>();
for (MutableInteger v: data1) {
this.heap1.insert(v);
}
for (MutableInteger v: data2) {
this.heap2.insert(v);
}
}
@Test
public void testIsEmpty() {
BinaryHeap<MutableInteger> tree = new BinaryHeap<>();
assertTrue(tree.isEmpty());
assertFalse(this.heap1.isEmpty());
assertFalse(this.heap2.isEmpty());
}
@Test
public void testSize() {
BinaryHeap<MutableInteger> tree = new BinaryHeap<>();
assertEquals(0, tree.size());
assertEquals(20, this.heap1.size());
assertEquals(7, this.heap2.size());
}
@Test
public void testInsert() {
BinaryHeap<MutableInteger> heap = new BinaryHeap<>();
int size = 0;
for (MutableInteger x: data1) {
heap.insert(x);
assertEquals(++size, heap.size());
}
assertEquals(data1.length, heap.size());
heap = new BinaryHeap<>();
size = 0;
for (MutableInteger x: data2) {
heap.insert(x);
assertEquals(++size, heap.size());
}
assertEquals(data2.length, heap.size());
}
@Test(expected = EmptyPriorityQueueException.class)
public void testEmptyFindMin() {
BinaryHeap<MutableInteger> heap = new BinaryHeap<>();
heap.findMin();
}
@Test
public void testFindMin() {
assertEquals(0, heap1.findMin().get());
assertEquals(1, heap2.findMin().get());
}
@Test(expected = EmptyPriorityQueueException.class)
public void testEmptyDeleteMin() {
BinaryHeap<MutableInteger> heap = new BinaryHeap<>();
heap.deleteMin();
}
@Test
public void testDeleteMin() {
// range 1 (sorted)
int size = data1.length;
assertEquals(heap1.size(), size);
for (MutableInteger x: data1) {
assertEquals(x, heap1.deleteMin());
size -= 1;
assertEquals(size, heap1.size());
}
assertEquals(0, heap1.size());
assertTrue(heap1.isEmpty());
// range 2 (was not sorted)
MutableInteger[] range2 = Arrays.copyOf(data2, data2.length);
Arrays.sort(range2);
size = range2.length;
assertEquals(heap2.size(), size);
for (MutableInteger x: range2) {
assertEquals(x.get(), heap2.deleteMin().get());
size -= 1;
assertEquals(size, heap2.size());
}
assertEquals(0, heap2.size());
assertTrue(heap2.isEmpty());
}
@Test(expected = ElementNotFoundException.class)
public void testRemoveEmpty() {
BinaryHeap<MutableInteger> heap = new BinaryHeap<>();
heap.remove(new MutableInteger(0));
}
@Test(expected = ElementNotFoundException.class)
public void testRemoveNotFound() {
heap1.remove(new MutableInteger(20));
}
@Test
public void testRemove() {
// heap 1
int size1 = heap1.size();
int[] deleteOrder1 = new int[] { 12, 17, 18, 19, 4, 5, 3, 2, 0, 9, 10, 16, 8, 14, 13, 15, 7,
6, 1, 11 };
for (int i = 0; i < deleteOrder1.length; ++i) {
// Remove from structure
heap1.remove(this.data1[deleteOrder1[i]]);
// Copy the remaining elements
BinaryHeap<MutableInteger> copyTree = new BinaryHeap<>(heap1);
// Retrieve all remaining elements in both structures
MutableInteger[] remains_in = new MutableInteger[deleteOrder1.length - i - 1],
remains_cp = new MutableInteger[deleteOrder1.length - i - 1];
for (int j = 0; j < remains_cp.length; ++j) {
remains_in[j] = this.data1[deleteOrder1[i + j + 1]];
remains_cp[j] = copyTree.deleteMin();
}
// Check that the copy is now empty, and that both list contains all
// elements.
assertTrue(copyTree.isEmpty());
assertEquals(new HashSet<>(Arrays.asList(remains_in)),
new HashSet<>(Arrays.asList(remains_cp)));
// Check that the size of the original tree is correct.
assertEquals(--size1, heap1.size());
}
assertTrue(heap1.isEmpty());
// heap 2
int size2 = heap2.size();
int[] deleteOrder2 = new int[] { 6, 5, 0, 1, 4, 2, 3 };
for (int i = 0; i < deleteOrder2.length; ++i) {
// Remove from structure
heap2.remove(this.data2[deleteOrder2[i]]);
// Copy the remaining elements
BinaryHeap<MutableInteger> copyTree = new BinaryHeap<>(heap2);
// Retrieve all remaining elements in both structures
MutableInteger[] remains_in = new MutableInteger[deleteOrder2.length - i - 1],
remains_cp = new MutableInteger[deleteOrder2.length - i - 1];
for (int j = 0; j < remains_cp.length; ++j) {
remains_in[j] = this.data2[deleteOrder2[i + j + 1]];
remains_cp[j] = copyTree.deleteMin();
}
// Check that the copy is now empty, and that both list contains all
// elements.
assertTrue(copyTree.isEmpty());
assertEquals(new HashSet<>(Arrays.asList(remains_in)),
new HashSet<>(Arrays.asList(remains_cp)));
// Check that the size of the original tree is correct.
assertEquals(--size2, heap2.size());
}
assertTrue(heap2.isEmpty());
}
@Test
public void testRemoveThenAdd() {
MutableInteger mi5 = this.data1[6];
heap1.remove(mi5);
assertEquals(19, heap1.size());
mi5.set(-20);
heap1.insert(mi5);
assertEquals(20, heap1.size());
assertEquals(-20, heap1.findMin().get());
}
}