forked from johnse/BE_VOILIER
137 lines
5.1 KiB
C
137 lines
5.1 KiB
C
#include <stm32f10x.h>
|
||
#include <stdio.h>
|
||
#include <Horloge.h>
|
||
|
||
|
||
//Il faut trouver le signal
|
||
//On est à Timer 2
|
||
|
||
static void (*TIM2_Appel)(void) = 0;
|
||
|
||
void Timer_Init(TIM_TypeDef *Timer, unsigned short Autoreload, unsigned short Prescaler){
|
||
if (Timer == TIM1) {
|
||
RCC->APB2ENR |= RCC_APB2ENR_TIM1EN; //L'horloge est enabléd
|
||
} else if (Timer == TIM2) {
|
||
TIM2->CR1 |= TIM_CR1_CEN; //On enable l'horloge interne
|
||
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
|
||
} else if (Timer == TIM3) {
|
||
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
|
||
} else if (Timer == TIM4) {
|
||
RCC->APB1ENR |= RCC_APB1ENR_TIM4EN;
|
||
}
|
||
Timer->ARR |= Autoreload;
|
||
Timer->PSC |= Prescaler;
|
||
}
|
||
|
||
//La fonction TIM2_IRQHandler s'utilise dans le processeur, on l'a juste redifint, tel qu'à chaque overflow on met un bit 1 dans GPIOA_ODR
|
||
void TIM2_IRQHandler(void) { //On redefinit le IRQHandler qui est déjà ecrit dans le code source
|
||
if (TIM2->SR & TIM_SR_UIF) { //On met le bit de overflow à un dès qu'on a overflow
|
||
TIM2->SR &= ~TIM_SR_UIF; //Remise à zero
|
||
|
||
if (TIM2_Appel){TIM2_Appel();}
|
||
}
|
||
}
|
||
|
||
|
||
void MyTimer_ActiveIT(TIM_TypeDef * Timer, char Prio, void(*Interrupt_fonc)(void)){ //On veut créer une fonction qui envoie un signal au cas où il y a debordement, avec une prioritaire, 0 plus importante 15 moins importante
|
||
if (Timer == TIM2){
|
||
|
||
TIM2_Appel = Interrupt_fonc;
|
||
|
||
NVIC_EnableIRQ(TIM2_IRQn);
|
||
NVIC_SetPriority(TIM2_IRQn, Prio);
|
||
TIM2->DIER |= TIM_DIER_UIE; //Le registre DIER(Interrupt Enable Register) est mis au bit Update Interrupt, qui se commute lors d'un overflow
|
||
TIM2->CR1 |= TIM_CR1_CEN; //Clock Enable
|
||
}
|
||
}
|
||
|
||
|
||
//Fonction qui permet de clignoter le DEL à un pulse volue (Sinusoïdale)
|
||
//Si le sinus est haut(haute tension) le Duty Cicle est proche de 100%,
|
||
//si le sinus est bas (vers la tension la plus basse) le Duty Cycle est vers 0%
|
||
//On s'applique sur un plage de [0V; 3.3V]
|
||
|
||
|
||
void MyTimer_PWM(TIM_TypeDef * Timer , int Channel){
|
||
int pwrmd;
|
||
int CCR_VAL = (ARR_VAL + 1) * DUTYC / 100.0f;
|
||
#if POWERMODE //Powermode 1
|
||
pwrmd = 0b110;
|
||
#else
|
||
pwrmd = 0b111; //Powermode 2
|
||
#endif
|
||
if (Channel == 1){
|
||
Timer->CCR1 = CCR_VAL; //Faut avoir le bon valeur
|
||
Timer->CCMR1 &= ~(0b111<<4); //On clear les trois bits qui sont de pwm
|
||
Timer->CCMR1 |= (pwrmd<<4); //On affecte le powermode au bits de lecture pour le µ-controlleur
|
||
Timer->CCMR1 |= TIM_CCMR1_OC1PE; //Update preload, il n'affecte pas le valeur avant que la prochaine cycle
|
||
Timer->CCER = TIM_CCER_CC1E; //Enable le pin voulu basculer
|
||
}
|
||
else if (Channel == 2){
|
||
Timer->CCR2 = CCR_VAL;
|
||
Timer->CCMR1 &= ~(0b111<<12); //Le TIMx_CCMR1 configure deux channels, de bit [6:4] CH1, [14:12] CH2 (OC2M = Output Channel 2 )
|
||
Timer->CCMR1 |= (pwrmd<<12);
|
||
Timer->CCMR1 |= TIM_CCMR1_OC2PE;
|
||
Timer->CCER |= TIM_CCER_CC2E;
|
||
}
|
||
else if (Channel == 3){
|
||
Timer->CCR3 = CCR_VAL;
|
||
Timer->CCMR1 &= ~(0b111<<4);
|
||
Timer->CCMR2 |= (pwrmd<<4);
|
||
Timer->CCMR2 |= TIM_CCMR2_OC3PE;
|
||
Timer->CCER |= TIM_CCER_CC3E;
|
||
}
|
||
else if (Channel == 4){
|
||
Timer->CCR4 = CCR_VAL;
|
||
Timer->CCMR1 &= ~(0b111<<12);
|
||
Timer->CCMR2 |= (pwrmd<<12);
|
||
Timer->CCMR2 |= TIM_CCMR2_OC4PE;
|
||
Timer->CCER |= TIM_CCER_CC4E;
|
||
}
|
||
|
||
//En dessous d'ici, on a l'aide du plus gentil chat que je connais
|
||
// Enable auto-reload preload -- //Ensures that your initial configuration — PWM mode, duty cycle, period — actually takes effect before the timer starts counting.
|
||
Timer->CR1 |= TIM_CR1_ARPE;
|
||
// Force update event to load ARR and CCR values immediately
|
||
Timer->EGR |= TIM_EGR_UG;
|
||
// Start the timer
|
||
Timer->CR1 |= TIM_CR1_CEN;
|
||
|
||
}
|
||
|
||
//Une fonction qui met le bon PWM volue
|
||
int Set_DutyCycle_PWM(TIM_TypeDef *Timer, int Channel, float DutyC){
|
||
int CCR_VAL = (ARR_VAL + 1) * DutyC / 100.0f; //ARR_VAL déjà definie
|
||
switch (Channel){
|
||
case 1: Timer->CCR1 = CCR_VAL;
|
||
case 2: Timer->CCR2 = CCR_VAL;
|
||
case 3: Timer->CCR3 = CCR_VAL;
|
||
case 4: Timer->CCR4 = CCR_VAL;
|
||
default: break;
|
||
}
|
||
return 0;
|
||
Timer->EGR |= TIM_EGR_UG;
|
||
}
|
||
//Putaing con, ça marche pas
|
||
|
||
|
||
/*
|
||
Pulse width modulation mode allows you to generate a signal with a frequency determined
|
||
by the value of the TIMx_ARR register and a duty cycle determined by the value of the
|
||
TIMx_CCRx register.
|
||
|
||
The PWM mode can be selected independently on each channel (one PWM per OCx
|
||
output) by writing 110 (PWM mode 1) or ‘111 (PWM mode 2) in the OCxM bits in the
|
||
TIMx_CCMRx register. You must enable the corresponding preload register by setting the
|
||
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register by
|
||
setting the ARPE bit in the TIMx_CR1 register.
|
||
*/
|
||
//Il faut créer une autre fonction qui lui met le bon duty cycle
|
||
//Timer->CCR1 = Duty_cycle*0.01*3.3; // On divise par cent et multiplue par 3.3V, plage de ADC
|
||
|
||
//Pareil pour la frequence, faut une fonction externe qui lui fait ça
|
||
|
||
|
||
//Pendant les vacances terminer l'ADC et l'USART (Activités sur Moodle)
|
||
//Hell naw, that did not happen cuh
|
||
|