Prolog-TP-IA/TP1/avl.pl
2023-02-27 23:00:46 +01:00

367 lines
11 KiB
Prolog
Raw Blame History

%***************************
% Gestion d'un AVL en Prolog
%***************************
%***************************
% INSA TOULOUSE - P.ESQUIROL
% mars 2017
%***************************
%*************************
% unit tests : OK
% integration aetoile : OK
%*************************
% Les AVL sont des arbres BINAIRES DE RECHERCHE H-EQUILIBRES :
% La hauteur de l'avl A est d<>finie par :
% -1, si A est vide (A=nil)
% 1 + max( hauteur(ss_arbre_gauche(A)), hauteur(ss_arbre_droitee(A)) ) sinon
% Tout noeud de l'arbre est soit :
% - une feuille
% - un noeud interne tel que la diff<66>rence de hauteur entre le sous-arbre droit
% et le sous-arbre gauche appartient <20> [-1,0,+1]
%***********************************************
% PREDICATS EXPORTES ET COMPLEXITE ALGORITHMIQUE
%***********************************************
% soit N = nombre de noeuds de l'arbre % UTILITE POUR A*
% % ----------------
% empty(?Avl) O(1) %<<< initialisation de P et Q
% height(+Avl, ?Height) O(1)
% put_flat(+Avl) O(N)
% put_90(+Avl) O(N)
% belongs(+Elem, +Avl) O(log N) %<<< appartenance d'un noeud <20> Q
% subtree(+Elem, +Avl, Ss_Avl) O(log N)
% insert(+Elem, +Avant, ?Apres) O(log N) %<<< insertion d'un nouveau noeud dans P ou dans Q
% suppress(+Elem,+Avant,?Apres) O(log N) %<<< mise <20> jour <=> suppression puis insertion
% suppress_min(?Min,+Avant,?Apres) O(log N) %<<< supression du noeud minimal
% suppress_max(?Max,+Avant,?Apres) O(log N)
%****************************
% Pr<50>dicats internes (prives)
%****************************
% left_rotate(+Avant, ?Apres) O(1)
% right_rotate(+Avant, ?Apres) O(1)
% left_balance(+Avant, ?Apres) O(1)
% right_balance(+Avant, ?Apres) O(1)
%------------------------------
% Constructeur et test AVL vide
%------------------------------
empty(nil).
%-----------------
% Hauteur d'un AVL
%-----------------
% par convention, un avl vide a une hauteur de -1
% sinon la hauteur est enregistree au meme niveau que la racine de l'avl
% elle n'est pas calculee recursivement "from scratch"
% elle est mise <20> jour de fa<66>on incr<63>mentale, apres chaque insertion ou suppression
% d'ou sa complexit<69> en O(1) :-)
height(nil, -1).
height(avl(_G,_R,_D, H), H).
%-------------------
% Affichage d'un AVL
%-------------------
% dans l'ordre croissant (lexicographique)
put_flat(nil):-!.
put_flat(avl(G,R,D,_H)) :-
put_flat(G),
nl, write(R),
put_flat(D).
%----------------------------
% Affichage (couch<63>) d'un AVL
%----------------------------
put_90(Avl) :-
nl, writeln('----------------------------------'),
put_90(Avl,"").
put_90(nil,Str) :-
write(Str), write('.').
put_90(avl(G,R,D,_H),Str) :-
append_strings(Str, " ", Str2),
put_90(D,Str2),
nl, write(Str), write(R),nl,
put_90(G,Str2).
%-----------------------------------------
% Appartenance d'un element donne a un AVL
%-----------------------------------------
belongs(Elem, avl(G,Racine,D,_Hauteur)) :-
(Elem = Racine ->
true
;
(Elem @< Racine ->
belongs(Elem, G)
;
belongs(Elem, D) %Racine @< Elem
)
).
%------------------------------------------------------------
% Recherche du sous-arbre qui a comme racine un element donne
%------------------------------------------------------------
subtree(Elem, avl(G,Racine,D,H), A) :-
(Elem = Racine ->
A = avl(G,Racine,D,H)
;
(Elem @< Racine ->
subtree(Elem,G,A)
;
subtree(Elem,D,A) %Racine @< Elem
)
).
%----------------------
% Rotations dans un avl
%----------------------
% Les rotations ci-dessous d<>crivent uniquement les cas ou la rotation est possible.
% Dans les autres cas, ces relations <20>chouent ; plus pr<70>cis<69>ment :
% a/ si l'arbre est un avl vide, alors aucune rotation n'est possible ;
% b/ si l'arbre est un avl non vide mais si son ss-arbre gauche est un avl vide
% alors la rotation droite n'est pas possible ;
% c/ si l'arbre est un avl non vide mais si son ss-arbre droite est un avl vide
% alors la rotation gauche n'est pas possible.
right_rotate(avl(G,R,D,_H), A_Apres) :-
height(D,HD),
G = avl(SG,RG,SD,_HG),
height(SD,HSD),
H_Inter is 1 + max(HSD, HD),
Inter = avl(SD,R,D,H_Inter),
height(SG,HSG),
H_Apres is 1 + max(HSG,H_Inter),
A_Apres = avl(SG,RG,Inter,H_Apres).
left_rotate(avl(G,R,D,_), A_Apres) :-
height(G,HG),
D = avl(SG,RD,SD,_),
height(SG,HSG),
H_Inter is 1 + max(HSG, HG),
Inter = avl(G,R,SG,H_Inter),
height(SD,HSD),
H_Apres is 1 + max(H_Inter,HSD),
A_Apres = avl(Inter,RD,SD,H_Apres).
%---------------------------------
% Insertion equilibree dans un avl
%---------------------------------
% On suppose que l'arbre avant insertion est equilibr<62> (difference de hauteur
% entre les ss-arbres gauche et droite de 1 au maximum)
% L'insertion doit assurer qu'apres insertion l'arbre est toujours equilibre
% sinon les rotations necessaires sont effectuees.
% On suppose que les noeuds contiennent des informations que l'on peut comparer
% a l'aide d'une relation d'ordre lexicographique (la cle c'est l'info elle-meme)
% En prolog, c'est la relation '@<'
% On peut comparer par exemple des integer, des string, des constantes,
% des listes d'entiers, des listes de constantes, etc ... bref, des termes clos
% T1 @< T2 est vrai si T1 est lexicographiquement inf<6E>rieur a T2.
insert(Elem, nil, avl(nil,Elem,nil,0)).
insert(Elem, AVL, NEW_AVL) :-
AVL = avl(Gauche,Racine,Droite,_Hauteur),
(Elem = Racine ->
% l'<27>l<EFBFBD>ment est d<>j<EFBFBD> present, pas d'insertion possible
fail
;
(Elem @< Racine ->
% insertion dans le ss-arbre gauche
insert(Elem, Gauche, New_Gauche),
height(New_Gauche, New_HG),
height(Droite, HD),
H_Int is 1+max(New_HG, HD),
AVL_INT = avl(New_Gauche, Racine, Droite, H_Int),
right_balance(AVL_INT, NEW_AVL)
;
% Elem @> Racine
% insertion dans le ss-arbre droite
insert(Elem, Droite, New_Droite),
height(New_Droite, New_HD),
height(Gauche, HG),
H_Int is 1+max(New_HD, HG),
AVL_INT =avl(Gauche, Racine,New_Droite, H_Int),
left_balance(AVL_INT, NEW_AVL)
)
).
%------------------------------------------------
% Suppression d'un element quelconque dans un avl
%------------------------------------------------
% On suppose que l'<27>l<EFBFBD>ment <20> supprimer appartient bien <20> l'AVL,
% sinon le predicat <20>choue (en particulier si l'AVL est vide).
suppress(Elem, AVL, NEW_AVL) :-
AVL = avl(Gauche, Racine, Droite, _Hauteur),
(Elem = Racine ->
% cas de la suppression de la racine de l'avl
(Gauche = nil -> % cas simple d'une feuille ou d'un avl sans fils gauche
NEW_AVL = Droite
;
(Droite = nil -> % cas simple d'un avl avec fils gauche mais sans fils droit
NEW_AVL = Gauche
;
% cas d'un avl avec fils gauche ET fils droit
%Gauche \= nil
%Droite \= nil
suppress_max(Max, Gauche, New_Gauche),
AVL_INT = avl(New_Gauche,Max,Droite,_),
left_balance(AVL_INT, NEW_AVL)
)
)
;
% cas des suppressions d'un element autre que la racine
(Elem @< Racine ->
% suppression dans le ss-arbre gauche
suppress(Elem, Gauche, New_Gauche),
AVL_INT = avl(New_Gauche, Racine, Droite,_),
left_balance(AVL_INT, NEW_AVL)
;
%Racine @< Droite
% suppression dans le ss-arbre droite
suppress(Elem, Droite, New_Droite),
AVL_INT = avl(Gauche, Racine, New_Droite,_),
right_balance(AVL_INT, NEW_AVL)
)
).
%-------------------------------------------------------
% Suppression du plus petit element dans un avl non vide
%-------------------------------------------------------
% Si l'avl est vide, le pr<70>dicat <20>choue
suppress_min(Min, AVL, NEW_AVL) :-
AVL = avl(Gauche,Racine,Droite, _Hauteur),
(Gauche = nil ->
Min = Racine,
NEW_AVL = Droite
;
% Gauche \= nil
suppress_min(Min, Gauche, New_Gauche),
AVL_INT = avl(New_Gauche, Racine, Droite,_),
left_balance(AVL_INT, NEW_AVL)
).
%-------------------------------------------------------
% Suppression du plus grand element dans un avl non vide
%-------------------------------------------------------
% Si l'avl est vide, le pr<70>dicat <20>choue
suppress_max(Max, AVL, NEW_AVL) :-
AVL = avl(Gauche,Racine,Droite, _Hauteur),
(Droite = nil ->
Max = Racine,
NEW_AVL = Gauche
;
% Droite \= nil
suppress_max(Max, Droite, New_Droite),
AVL_INT = avl(Gauche, Racine, New_Droite,_),
right_balance(AVL_INT, NEW_AVL)
).
%----------------------------------------
% Re-equilibrages d'un avl vers la gauche
%----------------------------------------
% - soit apres insertion d'un element dans le sous-arbre droite
% - soit apres suppression d'un <20>l<EFBFBD>ment dans le sous-arbre gauche
%----------------------------------------------------------------
left_balance(Avl, New_Avl) :-
Avl = avl(Gauche, Racine, Droite, _Hauteur),
height(Gauche, HG),
height(Droite, HD),
(HG is HD-2 ->
% le sous-arbre droite est trop haut
Droite = avl(G_Droite, _R_Droite, D_Droite, _HD),
height(G_Droite, HGD),
height(D_Droite, HDD),
(HDD > HGD ->
% une simple rotation gauche suffit
left_rotate(Avl, New_Avl)
;
% il faut faire une rotation droite_gauche
right_rotate(Droite, New_Droite),
height(New_Droite, New_HD),
H_Int is 1+ max(HG, New_HD),
Avl_Int = avl(Gauche, Racine, New_Droite, H_Int),
left_rotate(Avl_Int, New_Avl)
)
;
% la suppression n'a pas desequilibre l'avl
New_Hauteur is 1+max(HG,HD),
New_Avl = avl(Gauche, Racine, Droite, New_Hauteur)
).
%----------------------------------------
% Re-equilibrages d'un avl vers la droite
%----------------------------------------
% - soit apres insertion d'un element dans le sous-arbre gauche
% - soit apres suppression d'un <20>l<EFBFBD>ment dans le sous-arbre droite
%----------------------------------------------------------------
right_balance(Avl, New_Avl) :-
Avl = avl(Gauche, Racine, Droite, _Hauteur),
height(Gauche, HG),
height(Droite, HD),
(HD is HG-2 ->
% le sous-arbre gauche est trop haut
Gauche = avl(G_Gauche, _R_Gauche, D_Gauche, _HG),
height(G_Gauche, HGG),
height(D_Gauche, HDG),
(HGG > HDG ->
% une simple rotation droite suffit
right_rotate(Avl, New_Avl)
;
% il faut faire une rotation gauche_droite
left_rotate(Gauche, New_Gauche),
height(New_Gauche, New_HG),
H_Int is 1+ max(New_HG, HD),
Avl_Int = avl(New_Gauche, Racine, Droite, H_Int),
right_rotate(Avl_Int, New_Avl)
)
;
% la suppression n'a pas desequilibre l'avl
New_Hauteur is 1+max(HG,HD),
New_Avl = avl(Gauche, Racine, Droite, New_Hauteur)
).
%-----------------------------------------
% Arbres utilises pour les tests unitaires
%-----------------------------------------
avl_test(1, nil).
avl_test(2, avl(nil, 1, nil, 0)).
avl_test(3, avl(nil, 1, avl(nil,2,nil,0), 1)).
avl_test(4, avl(avl(nil,1,nil,0),2, nil, 1)).
avl_test(5, avl(avl(nil,1,nil,0), 2, avl(nil,3,nil,0),1) ).
avl_test(6, avl(avl(nil,5,nil,0), 6, avl(nil,7,nil,0),1) ).
avl_test(7, avl(G,4,D,2)) :-
avl_test(5,G),
avl_test(6,D).
avl_test(8, avl(G,5,D,2)) :-
D = avl(nil,6,nil,0),
avl_test(3,G).
avl_test(9, avl(G,3,D,2)) :-
G = avl(nil,1,nil,0),
avl_test(4,D).
/* Test uniquement valable avec ECLiPSe
avl_test(10, Final) :-
empty(Init),
(for(I,1,20), fromto(Init,In,Out,Final) do
insert(I,In,Out)
).
*/