Projet_innovant_IA/solutions/classifier_pretrained_model.py
Clémentine Bonneau a81f142495 Ajout solutions
2021-12-21 12:54:05 +01:00

21 lines
No EOL
736 B
Python

model_VGG_fcm = km.Sequential()
model_VGG_fcm.add(kl.Flatten(input_shape=features_train.shape[1:]))
model_VGG_fcm.add(kl.Dense(64, activation='relu'))
model_VGG_fcm.add(kl.Dropout(0.5))
model_VGG_fcm.add(kl.Dense(1, activation='sigmoid'))
model_VGG_fcm.compile(optimizer='rmsprop',
loss='binary_crossentropy',
metrics=['accuracy'])
model_VGG_fcm.summary()
train_labels = np.array([0] * int((N_train/2)) + [1] * int((N_train/2)))
validation_labels = np.array([0] * int((N_val/2)) + [1] * int((N_val/2)))
model_VGG_fcm.fit(features_train, train_labels,
epochs=epochs,
batch_size=batch_size,
validation_data=(features_validation, validation_labels))
t_learning_VGG_fcm = te-ts