Projet_innovant_IA/solutions/mnist_conv_architecture.py
Clémentine Bonneau a81f142495 Ajout solutions
2021-12-21 12:54:05 +01:00

23 lines
No EOL
797 B
Python

model = km.Sequential()
model.add(kl.Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28,28, 1), data_format="channels_last"))
model.add(kl.Conv2D(64, (3, 3), activation='relu'))
model.add(kl.MaxPooling2D(pool_size=(2, 2)))
model.add(kl.Dropout(0.25))
model.add(kl.Flatten())
model.add(kl.Dense(128, activation='relu'))
model.add(kl.Dropout(0.5))
model.add(kl.Dense(N_classes, activation='softmax'))
# Résumé
model.summary()
# Apprentissage
model.compile(loss="sparse_categorical_crossentropy",
optimizer=ko.Adadelta(),
metrics=['accuracy'])
ts=time.time()
model.fit(X_train_conv, Y_train,
batch_size=batch_size,
epochs=epochs,
verbose=1,
validation_data=(X_test_conv, Y_test))
te=time.time()
t_train_conv = te-ts