data_dir_test = data_dir+'test/' N_test = len(os.listdir(data_dir_test+"/test")) test_datagen = kpi.ImageDataGenerator(rescale=1. / 255) test_generator = test_datagen.flow_from_directory( data_dir_test, #data_dir_sub+"/train/", target_size=(img_height, img_width), batch_size=batch_size, class_mode=None, shuffle=False) test_prediction = model_VGG_LastConv_fcm.predict_generator(test_generator, N_test // batch_size) images_test = [data_dir_test+"/test/"+k for k in os.listdir(data_dir_test+"/test")][:9] x_test = [kpi.img_to_array(kpi.load_img(image_test))/255 for image_test in images_test] # this is a PIL image fig = plt.figure(figsize=(10,10)) for k in range(9): ax = fig.add_subplot(3,3,k+1) ax.imshow(x_test[k], interpolation='nearest') pred = test_prediction[k] if pred >0.5: title = "Probabiliy for dog : %.1f" %(pred*100) else: title = "Probabiliy for cat : %.1f" %((1-pred)*100) ax.set_title(title) plt.show()