model_VGG_fcm = km.Sequential() model_VGG_fcm.add(kl.Flatten(input_shape=features_train.shape[1:])) model_VGG_fcm.add(kl.Dense(64, activation='relu')) model_VGG_fcm.add(kl.Dropout(0.5)) model_VGG_fcm.add(kl.Dense(1, activation='sigmoid')) model_VGG_fcm.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) model_VGG_fcm.summary() train_labels = np.array([0] * int((N_train/2)) + [1] * int((N_train/2))) validation_labels = np.array([0] * int((N_val/2)) + [1] * int((N_val/2))) model_VGG_fcm.fit(features_train, train_labels, epochs=epochs, batch_size=batch_size, validation_data=(features_validation, validation_labels)) t_learning_VGG_fcm = te-ts