Delete solutions directory
This commit is contained in:
parent
abec908d5b
commit
ec07ac8c1c
5 changed files with 0 additions and 86 deletions
BIN
solutions/.DS_Store
vendored
BIN
solutions/.DS_Store
vendored
Binary file not shown.
|
@ -1,21 +0,0 @@
|
||||||
model_VGG_fcm = km.Sequential()
|
|
||||||
model_VGG_fcm.add(kl.Flatten(input_shape=features_train.shape[1:]))
|
|
||||||
model_VGG_fcm.add(kl.Dense(64, activation='relu'))
|
|
||||||
model_VGG_fcm.add(kl.Dropout(0.5))
|
|
||||||
model_VGG_fcm.add(kl.Dense(1, activation='sigmoid'))
|
|
||||||
|
|
||||||
model_VGG_fcm.compile(optimizer='rmsprop',
|
|
||||||
loss='binary_crossentropy',
|
|
||||||
metrics=['accuracy'])
|
|
||||||
|
|
||||||
model_VGG_fcm.summary()
|
|
||||||
|
|
||||||
|
|
||||||
train_labels = np.array([0] * int((N_train/2)) + [1] * int((N_train/2)))
|
|
||||||
validation_labels = np.array([0] * int((N_val/2)) + [1] * int((N_val/2)))
|
|
||||||
|
|
||||||
model_VGG_fcm.fit(features_train, train_labels,
|
|
||||||
epochs=epochs,
|
|
||||||
batch_size=batch_size,
|
|
||||||
validation_data=(features_validation, validation_labels))
|
|
||||||
t_learning_VGG_fcm = te-ts
|
|
|
@ -1,13 +0,0 @@
|
||||||
conv_mp = km.Sequential([ kl.MaxPool2D(pool_size=(2,2))])
|
|
||||||
|
|
||||||
img_in = np.expand_dims(x, 0)
|
|
||||||
img_out = conv_mp.predict(img_in)
|
|
||||||
|
|
||||||
fig, (ax0, ax1) = plt.subplots(ncols=2, figsize=(10, 5))
|
|
||||||
ax0.imshow(img_in[0,:,:,0].astype(np.uint8),
|
|
||||||
cmap="binary");
|
|
||||||
ax0.grid(False)
|
|
||||||
|
|
||||||
ax1.imshow(img_out[0,:,:,0].astype(np.uint8),
|
|
||||||
cmap="binary");
|
|
||||||
ax1.grid(False)
|
|
|
@ -1,23 +0,0 @@
|
||||||
model = km.Sequential()
|
|
||||||
model.add(kl.Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=(28,28, 1), data_format="channels_last"))
|
|
||||||
model.add(kl.Conv2D(64, (3, 3), activation='relu'))
|
|
||||||
model.add(kl.MaxPooling2D(pool_size=(2, 2)))
|
|
||||||
model.add(kl.Dropout(0.25))
|
|
||||||
model.add(kl.Flatten())
|
|
||||||
model.add(kl.Dense(128, activation='relu'))
|
|
||||||
model.add(kl.Dropout(0.5))
|
|
||||||
model.add(kl.Dense(N_classes, activation='softmax'))
|
|
||||||
# Résumé
|
|
||||||
model.summary()
|
|
||||||
# Apprentissage
|
|
||||||
model.compile(loss="sparse_categorical_crossentropy",
|
|
||||||
optimizer=ko.Adadelta(),
|
|
||||||
metrics=['accuracy'])
|
|
||||||
ts=time.time()
|
|
||||||
model.fit(X_train_conv, Y_train,
|
|
||||||
batch_size=batch_size,
|
|
||||||
epochs=epochs,
|
|
||||||
verbose=1,
|
|
||||||
validation_data=(X_test_conv, Y_test))
|
|
||||||
te=time.time()
|
|
||||||
t_train_conv = te-ts
|
|
|
@ -1,29 +0,0 @@
|
||||||
data_dir_test = data_dir+'test/'
|
|
||||||
N_test = len(os.listdir(data_dir_test+"/test"))
|
|
||||||
|
|
||||||
test_datagen = kpi.ImageDataGenerator(rescale=1. / 255)
|
|
||||||
|
|
||||||
test_generator = test_datagen.flow_from_directory(
|
|
||||||
data_dir_test,
|
|
||||||
#data_dir_sub+"/train/",
|
|
||||||
target_size=(img_height, img_width),
|
|
||||||
batch_size=batch_size,
|
|
||||||
class_mode=None,
|
|
||||||
shuffle=False)
|
|
||||||
|
|
||||||
test_prediction = model_VGG_LastConv_fcm.predict_generator(test_generator, N_test // batch_size)
|
|
||||||
|
|
||||||
images_test = [data_dir_test+"/test/"+k for k in os.listdir(data_dir_test+"/test")][:9]
|
|
||||||
x_test = [kpi.img_to_array(kpi.load_img(image_test))/255 for image_test in images_test] # this is a PIL image
|
|
||||||
|
|
||||||
fig = plt.figure(figsize=(10,10))
|
|
||||||
for k in range(9):
|
|
||||||
ax = fig.add_subplot(3,3,k+1)
|
|
||||||
ax.imshow(x_test[k], interpolation='nearest')
|
|
||||||
pred = test_prediction[k]
|
|
||||||
if pred >0.5:
|
|
||||||
title = "Probabiliy for dog : %.1f" %(pred*100)
|
|
||||||
else:
|
|
||||||
title = "Probabiliy for cat : %.1f" %((1-pred)*100)
|
|
||||||
ax.set_title(title)
|
|
||||||
plt.show()
|
|
Loading…
Reference in a new issue