clc; clear all; close all; F1 = 85005.9; F3 = 94986.8; F5 = 115015.9; F4 = 100000; F2 = 90000; F6 = 120000; % % F1 = 85000; % F5 = 115000; % F3 = 95000; ChebFac0 = 1; ChebFac1 = 3.0332e-6; ChebFac2 = 1.162e-11; ChebFac3 = 7.6663e-18; ChebFac4 = 1.7483e-23; Fe=320000; Te = 1/Fe; Fsin=120000; N=6; M=pow2(N); T=M*Te; % Condition : T < M/(2*Fsin) %T = pow2(N-2)/Fsin; %Te = T/M; % harmoniques = arrayfun(@(x) x * 2 * pi * F1, 0:1:5); % reponseHarmoniques = arrayfun(@(x) chebychev(x), harmoniques); % loglog(harmoniques, reponseHarmoniques); Tsim = T-Te; res=sim('Simul6PistoletsDFT.slx'); plot(res.Continu.Data); F=linspace(0, Fe-Fe/M, M); % mauvais_echantillon = res.Echant.Data; % for i = 1:floor((length(mauvais_echantillon) / 2)) % mauvais_echantillon(i) = 0; % end % fourier = abs(fft(mauvais_echantillon)/M); % filteredSignal = arrayfun(@(x) chebychev(x), res.Echant.Data); % fourier = abs(fft(filteredSignal)/M); % fourier=abs(fft(res.Echant.Data)/M); %res=sim('SimulDFT.slx'); %fourier=fft(res.Sinus_Echantillon.Data)/M; %fourier = real(fourier * (1i)); % figure(1) % bode(tf(1,[ChebFac4, ChebFac3, ChebFac2, ChebFac1, ChebFac0])); % figure(2) % bode(tf(F,arrayfun(@(x) chebychev(x), F))); % grid; % stem(F, fourier, 'o'); % set(gca, 'YScale', 'log'); % plot(res.Echant); %plot(res.Sinus_Continu); %hold on; % permet de superposer la courbe à suivre % plot(res.Sinus_Echantillon,'o'); % % function filtre = chebychev(p) % ChebFac0 = 1; % ChebFac1 = 3.0332e-6; % ChebFac2 = 1.162e-11; % ChebFac3 = 7.6663e-18; % ChebFac4 = 1.7483e-23; % filtre = 1 / (ChebFac4 * p^4 + ChebFac3 * p^3 + ChebFac2 * p^2 + ChebFac1 * p + ChebFac0); % end