deux modeles debut projet
This commit is contained in:
parent
b45f977914
commit
c8ae63c642
2 changed files with 383 additions and 0 deletions
262
alexnet_pytorch.py
Normal file
262
alexnet_pytorch.py
Normal file
|
@ -0,0 +1,262 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""AlexNet_pytorch.ipynb
|
||||
|
||||
Automatically generated by Colaboratory.
|
||||
|
||||
Original file is located at
|
||||
https://colab.research.google.com/drive/1iafZNxt1THDq6WRYvmYPwGbDmSQFfj9m
|
||||
|
||||
# Dataset creation section
|
||||
"""
|
||||
|
||||
from __future__ import print_function, division
|
||||
import os
|
||||
import torch
|
||||
import pandas as pd
|
||||
from skimage import io, transform
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
import torchvision.transforms as transforms
|
||||
import torchvision
|
||||
import cv2
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
|
||||
# Ignore warnings
|
||||
import warnings
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
plt.ion() # interactive mode
|
||||
|
||||
from google.colab import drive
|
||||
drive.mount('/content/drive')
|
||||
|
||||
data = pd.read_csv('/content/drive/MyDrive/insa 5/Datasets/celebA/labels.csv',nrows=4999)
|
||||
data = data[["image_id","Smiling"]]
|
||||
data= data.replace(-1,0)
|
||||
pd.set_option("display.max_rows", 20, "display.max_columns", 20)
|
||||
train_set,test_set=train_test_split(data,test_size=0.25)
|
||||
print(train_set)
|
||||
|
||||
class ImageDataset(Dataset):
|
||||
def __init__(self,csv,img_folder,transform):
|
||||
self.csv=csv
|
||||
self.transform=transform
|
||||
self.img_folder=img_folder
|
||||
|
||||
self.image_names=self.csv[:]['image_id']
|
||||
self.labels=np.array(self.csv.drop(['image_id'], axis=1))
|
||||
|
||||
#The __len__ function returns the number of samples in our dataset.
|
||||
def __len__(self):
|
||||
return len(self.image_names)
|
||||
|
||||
def __getitem__(self,index):
|
||||
|
||||
image=cv2.imread(self.img_folder+self.image_names.iloc[index])
|
||||
image=cv2.cvtColor(image,cv2.COLOR_BGR2RGB)
|
||||
image=self.transform(image)
|
||||
targets=self.labels[index]
|
||||
|
||||
sample = {'image': image,'labels':targets}
|
||||
|
||||
#return sample
|
||||
return image,targets
|
||||
|
||||
train_transform = transforms.Compose([
|
||||
transforms.ToPILImage(),
|
||||
transforms.Resize((224, 224)),
|
||||
transforms.ToTensor()])
|
||||
#,transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
||||
test_transform =transforms.Compose([
|
||||
transforms.ToPILImage(),
|
||||
transforms.Resize((224, 224)),
|
||||
transforms.ToTensor()])
|
||||
|
||||
train_dataset=ImageDataset(train_set,'/content/drive/MyDrive/insa 5/Datasets/celebA/images/',train_transform)
|
||||
test_dataset=ImageDataset(test_set,'/content/drive/MyDrive/insa 5/Datasets/celebA/images/',test_transform)
|
||||
|
||||
BATCH_SIZE=16
|
||||
|
||||
train_dataloader = DataLoader(
|
||||
train_dataset,
|
||||
batch_size=BATCH_SIZE,
|
||||
shuffle=True
|
||||
)
|
||||
|
||||
test_dataloader = DataLoader(
|
||||
test_dataset,
|
||||
batch_size=BATCH_SIZE,
|
||||
shuffle=True
|
||||
)
|
||||
|
||||
sample = next(iter(train_dataloader))
|
||||
input, label = sample
|
||||
input = input.view(BATCH_SIZE, -1)
|
||||
#print(sample[input])
|
||||
print(input.size())
|
||||
|
||||
def imshow(inp, title=None):
|
||||
"""imshow for Tensor."""
|
||||
inp = inp.numpy().transpose((1, 2, 0))
|
||||
inp = np.clip(inp, 0, 1)
|
||||
plt.imshow(inp)
|
||||
|
||||
|
||||
# Get a batch of training data
|
||||
images, labels = next(iter(test_dataloader))
|
||||
|
||||
# Make a grid from batch
|
||||
output = torchvision.utils.make_grid(images)
|
||||
|
||||
imshow(output)
|
||||
|
||||
"""# Training section"""
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
AlexNet_model=torch.hub.load('pytorch/vision:v0.6.0', 'alexnet', pretrained=True)
|
||||
AlexNet_model.eval()
|
||||
print(AlexNet_model)
|
||||
AlexNet_model.classifier[4]=nn.Linear(4096,1024)
|
||||
AlexNet_model.classifier[6]=nn.Linear(1024,2)
|
||||
AlexNet_model.eval()
|
||||
print(AlexNet_model)
|
||||
|
||||
class Net(nn.Module):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.conv1 = nn.Conv2d(3, 96, 11, stride=4)
|
||||
self.pool = nn.MaxPool2d(3, stride = 2)
|
||||
self.conv2 = nn.Conv2d(96, 256, 5, padding=2)
|
||||
self.conv3 = nn.Conv2d(256, 384, 3, padding=1)
|
||||
self.conv4 = nn.Conv2d(384, 384, 3, padding=1)
|
||||
self.conv5 = nn.Conv2d(384, 256, 3, padding=1)
|
||||
self.fc1 = nn.Linear(6400, 4096)
|
||||
self.fc2 = nn.Linear(4096, 4096)
|
||||
self.fc3 = nn.Linear(4096, 1000)
|
||||
self.fc4 = nn.Linear(1000, 2)
|
||||
self.dropout = nn.Dropout(0.5)
|
||||
|
||||
def forward(self, x):
|
||||
x = self.pool(F.relu(self.conv1(x)))
|
||||
x = self.pool(F.relu(self.conv2(x)))
|
||||
x = F.relu(self.conv3(x))
|
||||
x = F.relu(self.conv4(x))
|
||||
x = F.relu(self.conv5(x))
|
||||
x = self.pool(x)
|
||||
x = torch.flatten(x, 1) # flatten all dimensions except batch
|
||||
x = self.dropout(F.relu(self.fc1(x)))
|
||||
x = self.dropout(F.relu(self.fc2(x)))
|
||||
x = self.dropout(F.relu(self.fc3(x)))
|
||||
x = self.fc4(x)
|
||||
return x
|
||||
|
||||
import torch
|
||||
#print(torch.cuda.get_device_name(0))
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
print(device)
|
||||
net = AlexNet_model
|
||||
net.to(device)
|
||||
|
||||
import torch.optim as optim
|
||||
#criterion = nn.BCELoss()
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
|
||||
|
||||
for epoch in range(10): # loop over the dataset multiple times
|
||||
#print(epoch)
|
||||
running_loss = 0.0
|
||||
for i, data in enumerate(train_dataloader, 0):
|
||||
#print(i)
|
||||
# get the inputs; data is a list of [inputs, labels]
|
||||
inputs, labels = data
|
||||
inputs, labels = inputs.cuda(), labels.cuda()
|
||||
#print(inputs.size())
|
||||
#print(labels.flatten())
|
||||
# zero the parameter gradients
|
||||
optimizer.zero_grad()
|
||||
outputs = net(inputs)
|
||||
loss = criterion(outputs, labels.flatten())
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
|
||||
#predicted=[]
|
||||
# forward + backward + optimize
|
||||
#outputs = net(inputs)
|
||||
#predicted = torch.nn.functional.softmax(outputs, dim=0)
|
||||
#outputs=outputs.float()
|
||||
|
||||
#predicted=torch.tensor(predicted)
|
||||
#predicted=predicted.float()
|
||||
#labels=labels.float()
|
||||
#print(predicted.flatten())
|
||||
#loss = criterion(predicted.flatten(), labels.flatten())
|
||||
#loss.backward()
|
||||
#optimizer.step()
|
||||
# print statistics
|
||||
running_loss += loss.item()
|
||||
if i % 10 == 9: # print every 2000 mini-batches
|
||||
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss/10 ))
|
||||
running_loss = 0.0
|
||||
|
||||
print('Finished Training')
|
||||
|
||||
|
||||
|
||||
PATH = '/content/drive/MyDrive/Models/saved_AlexNet.pth'
|
||||
torch.save(net.state_dict(), PATH)
|
||||
|
||||
"""# Testing section"""
|
||||
|
||||
dataiter = iter(train_dataloader)
|
||||
images, labels = dataiter.next()
|
||||
classes = ("Not Smiling", "Smiling")
|
||||
# print images
|
||||
imshow(torchvision.utils.make_grid(images))
|
||||
print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for j in range(16)))
|
||||
|
||||
PATH = '/content/drive/MyDrive/insa 5/Models/saved_AlexNet.pth'
|
||||
net.load_state_dict(torch.load(PATH))
|
||||
|
||||
|
||||
|
||||
outputs = net(images.cuda())
|
||||
print(outputs)
|
||||
|
||||
_, predicted = torch.max(outputs, 1)
|
||||
|
||||
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
|
||||
for j in range(16)))
|
||||
|
||||
correct = 0
|
||||
total = 0
|
||||
predicted = 0
|
||||
# since we're not training, we don't need to calculate the gradients for our outputs
|
||||
with torch.no_grad():
|
||||
for data in test_dataloader:
|
||||
images, labels = data
|
||||
# calculate outputs by running images through the network
|
||||
outputs = net(images.cuda())
|
||||
# the class with the highest energy is what we choose as prediction
|
||||
_, predicted = torch.max(outputs.data, 1)
|
||||
#probabilities = torch.nn.functional.softmax(outputs[0], dim=0)
|
||||
#print(probabilities)
|
||||
#print("labels.size(0): ",labels.size(0))
|
||||
#print("Batch size: ",BATCH_SIZE)
|
||||
total += labels.size(0)
|
||||
#if probabilities >= 0.5:
|
||||
# predicted = 1
|
||||
#else:
|
||||
# predicted = 0
|
||||
correct += (predicted == labels.flatten().cuda()).sum().item()
|
||||
#print("Predicted: ", predicted)
|
||||
#print("Labels: ", labels.flatten())
|
||||
#print("Correct: ", correct)
|
||||
print(correct)
|
||||
print(total)
|
||||
print('Accuracy of the network on the 750 test images: %d %%' % (
|
||||
100 * correct / total))
|
121
hog&svm.py
Normal file
121
hog&svm.py
Normal file
|
@ -0,0 +1,121 @@
|
|||
# -*- coding: utf-8 -*-
|
||||
"""HOG&SVM.ipynb
|
||||
|
||||
Automatically generated by Colaboratory.
|
||||
|
||||
Original file is located at
|
||||
https://colab.research.google.com/drive/128Eq-6Qnnv2Q7qW3cs8YlUe_f2EdGps5
|
||||
"""
|
||||
|
||||
from __future__ import print_function, division
|
||||
import os
|
||||
import torch
|
||||
import pandas as pd
|
||||
from skimage import io, transform
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
import torchvision.transforms as transforms
|
||||
import torchvision
|
||||
import cv2
|
||||
from sklearn.model_selection import train_test_split
|
||||
import numpy as np # linear algebra
|
||||
import json
|
||||
from matplotlib import pyplot as plt
|
||||
from skimage import color
|
||||
from skimage.feature import hog
|
||||
from sklearn import svm
|
||||
from sklearn.metrics import classification_report,accuracy_score
|
||||
|
||||
# Ignore warnings
|
||||
import warnings
|
||||
warnings.filterwarnings("ignore")
|
||||
|
||||
plt.ion() # interactive mode
|
||||
|
||||
from google.colab import drive
|
||||
drive.mount('/content/drive')
|
||||
|
||||
from numpy import genfromtxt
|
||||
labels = genfromtxt('/content/drive/MyDrive/insa 5/Datasets/celebA/labels.csv', delimiter=',')
|
||||
labels=np.where(labels==-1, 0, labels)
|
||||
print(labels)
|
||||
labels=np.delete(labels,0,0)
|
||||
labels=np.delete(labels,0,1)
|
||||
print(labels)
|
||||
labels_smil=[]
|
||||
for i in range(5002):
|
||||
labels_smil.append(labels[i,31])
|
||||
print(labels_smil)
|
||||
|
||||
import os
|
||||
|
||||
#1)recuperation du contenu du dossier c:\dossier\
|
||||
contenu=os.listdir('/content/drive/MyDrive/insa 5/Datasets/celebA/images/')
|
||||
#ça te donnera une liste du chemin complet de chaques fichiers du dossier, par exemple pour le fichier 001.jpg, ça ressemblerait à ça : 'c:/dossier/001.jpg'
|
||||
#2)recuperation des noms de fichiers (sans le chemin) qui sont des .jpg:
|
||||
contenu=[x.split('/')[-1] for x in contenu if '.jpg' in x.split('/')[-1]]
|
||||
#3)Maintenant on trie la liste
|
||||
contenu.sort()
|
||||
print(contenu)
|
||||
|
||||
images=[]
|
||||
for i in range(len(contenu)):
|
||||
#print('/content/drive/MyDrive/insa 5/Datasets/celebA/images/'+str(contenu[i]))
|
||||
image=cv2.imread('/content/drive/MyDrive/insa 5/Datasets/celebA/images/'+str(contenu[i]))
|
||||
#print(image)
|
||||
images.append(image)
|
||||
|
||||
hog_images=[]
|
||||
hog_features=[]
|
||||
for i in range(len(contenu)):
|
||||
fd, hog_img = hog(images[i], orientations=8, pixels_per_cell=(16, 16),
|
||||
cells_per_block=(4, 4), visualize=True)
|
||||
hog_images.append(hog_img)
|
||||
hog_features.append(fd)
|
||||
print(hog_features)
|
||||
print(hog_images)
|
||||
|
||||
print(str(len(hog_features)))
|
||||
print(hog_images[0])
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from skimage.feature import hog
|
||||
from skimage import data, exposure
|
||||
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(8, 4), sharex=True, sharey=True)
|
||||
|
||||
ax1.axis('off')
|
||||
ax1.imshow(images[53], cmap=plt.cm.gray)
|
||||
ax1.set_title('Input image')
|
||||
|
||||
# Rescale histogram for better display
|
||||
hog_image_rescaled = exposure.rescale_intensity(hog_images[53], in_range=(0, 10))
|
||||
|
||||
ax2.axis('off')
|
||||
ax2.imshow(hog_image_rescaled, cmap=plt.cm.gray)
|
||||
ax2.set_title('Histogram of Oriented Gradients')
|
||||
plt.show()
|
||||
|
||||
clf = svm.SVC()
|
||||
|
||||
x_train, x_test = hog_features[:4000], hog_features[4000:]
|
||||
y_train, y_test = labels_smil[:4000] , labels_smil[4000:]
|
||||
print(x_train)
|
||||
print(y_train)
|
||||
clf.fit(x_train,y_train)
|
||||
y_pred = clf.predict(x_test)
|
||||
print("Accuracy: "+str(accuracy_score(y_test, y_pred)))
|
||||
print('\n')
|
||||
print(classification_report(y_test, y_pred))
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in a new issue