Supprimer INSA/TP anadon/.Rhistory

This commit is contained in:
Justine Beau 2024-12-24 14:57:06 +01:00
parent 1de51889d9
commit 4838e3a904

View file

@ -1,171 +0,0 @@
setwd("C:/Users/PC/Desktop/INSA/anadonn")
library(knitr)
## Global options
options(max.print="75")
opts_chunk$set(echo=FALSE,
eval=FALSE,
cache=FALSE,
prompt=FALSE,
tidy=TRUE,
comment=NA,
message=FALSE,
warning=FALSE,
class.source="badCode")
opts_knit$set(width=75)
donnees <- read.table("DataProjet3MIC-2425.txt",header=TRUE, sep=";")
str(donnees)
summary(donnees)
ggplot(data = donnees)+
geom_point(aes(x=ExpT1,y=T1_1H_R1))
library(corrplot)
library(ggplot2)
library(gridExtra)
library(forcats)
library(reshape2)
library(BioStatR)
library(FactoMineR)
library(factoextra)
library(knitr)
## Global options
options(max.print="75")
opts_chunk$set(echo=FALSE,
eval=FALSE,
cache=FALSE,
prompt=FALSE,
tidy=TRUE,
comment=NA,
message=FALSE,
warning=FALSE,
class.source="badCode")
opts_knit$set(width=75)
donnees <- read.table("DataProjet3MIC-2425.txt",header=TRUE, sep=";")
head(donnees,200)
str(donnees)
summary(donnees)
ggplot(data = donnees)+
geom_point(aes(x=ExpT1,y=T1_1H_R1))
apply(donnees[,1:36],2,var)
apply(donnees[,1:36],2,mean)
hist(donnees$T1_1H_R1)
ggplot(donnees,aes(x=T1_1H_R1))+geom_boxplot()
library(knitr)
## Global options
options(max.print="75")
opts_chunk$set(echo=TRUE,
cache=FALSE,
prompt=FALSE,
tidy=TRUE,
comment=NA,
message=FALSE,
warning=FALSE,
class.source="badCode")
opts_knit$set(width=75)
library(corrplot)
library(ggplot2)
library(gridExtra)
library(forcats)
library(reshape2)
library(BioStatR)
dim(wine)
nrow(wine)
ncol(wine)
head(wine)
wine <- read.table("wine.txt",header=TRUE)
head(wine)
dim(wine)
nrow(wine)
ncol(wine)
is.data.frame(wine)
names(wine)
colnames(wine)
str(wine)
wine$Qualite<-as.factor(wine$Qualite)
wine$Type<-factor(wine$Type,labels=c("blanc","rouge"))
head(wine)
summary(wine)
gEx <- ggplot(data=wine)
summary(gEx)
names(gEx)
gEx$layers
ggplot(data=wine,aes(x=Densite,y=Alcool))+
geom_point()
ggplot(data=wine)+
geom_point(aes(x=Densite,y=Alcool,color=Type))
ggplot(data=wine)+
geom_point(aes(x=Densite,y=Alcool),color="blue")
# A COMPLETER
summary(wine$Type)
levels(wine$Type
)
table(wine$Type)
g1<-ggplot(wine, aes(x=Type))+
geom_bar()+
ylab("")+ggtitle("Effectifs")
g2<-ggplot(wine, aes(x = Type)) +
geom_bar(aes(y = (..count..)/sum(..count..)))+ylab("")+ggtitle("Frequences")
df <- data.frame(group = levels(wine$Type),
value = as.vector(table(wine$Type))/nrow(wine))
g3<-ggplot(df, aes(x="", y=value, fill=group))+
geom_bar(width = 1, stat = "identity")+
coord_polar("y", start=0)+
theme(legend.position="bottom")
grid.arrange(g3,g1,g2,ncol=3)
wine$Qualite <- fct_relevel(wine$Qualite,"bad","medium","good")
EffQual=as.vector(table(wine$Qualite))
FreqQual= data.frame(Eff = EffQual, Freq = EffQual/length(wine$Qualite), FreqCumul=cumsum(EffQual)/length(wine$Qualite))
rownames(FreqQual)=levels(wine$Qualite)
knitr::kable(FreqQual, caption = 'Description de la variable Qualite',booktabs = TRUE,digits=3)
df <- data.frame(Qualite = levels(wine$Qualite), value = table(wine$Qualite),
valuecumul = 100 * cumsum(prop.table(table(wine$Qualite))))
df$Qualite <- fct_relevel(df$Qualite, "bad", "medium", "good")
df <- data.frame(df, freq = df$value.Freq/nrow(wine))
g1 <- ggplot(wine) + geom_bar(aes(x = Qualite)) + ggtitle("Effectifs")+xlab("Qualite")
g2 <- ggplot(wine) + geom_bar(aes(x = Qualite, y = ..prop.., group = 1)) + ggtitle("Frequences")+xlab("Qualite")
g3 <- ggplot(df, aes(x = Qualite, y = valuecumul)) + geom_bar(stat = "identity") +
ggtitle("Fréquences cumulées")
g4 <- ggplot(df, aes(x = "", y = freq, fill = Qualite)) + geom_bar(width = 1, stat = "identity") +
coord_polar("y", start = 0)
grid.arrange(g1, g2, g3, g4, ncol = 2)
mean(wine$Alcool)
median(wine$Alcool)
var(wine$Alcool)
sd(wine$Alcool)
range(wine$Alcool)
summary(wine$Alcool)
quantile(wine$Alcool,0.75,names=FALSE)-quantile(wine$Alcool,0.25,names = FALSE)
quantile(wine$Alcool)
H<-hist(wine$Alcool)
ggplot(wine,aes(y=Alcool))+geom_boxplot()
wineaux<-melt(wine[,-c(1,2)])
ggplot(wineaux,aes(x=variable,y=value))+
geom_boxplot()
B<-boxplot(wine$Alcool)
print('Correlation')
cor(wine[,-c(1,2)])
print('Covariance')
cov(wine[,-c(1,2)])
help(corrplot)
corrplot(cor(wine[,-c(1,2)]),method = "ellipse")
ggplot(data=wine)+
geom_point(aes(x=Alcool,y=Densite))+
geom_smooth(aes(x=Alcool,y=Densite),method="lm")
donneesaux<-melt(donnees[,-(37:39)])
ggplot(donneesaux,aes(x=variable,y=value))+
geom_boxplot()
donneesaux<-melt(donnees[,(1:18)])
ggplot(donneesaux,aes(x=variable,y=value))+
geom_boxplot()
don_R1<-melt(donnees[,(1:18)])
gR1=ggplot(don_R1,aes(x=variable,y=value))+
geom_boxplot()
don_R2<-melt(donnees[,(19:36)])
gR2=ggplot(don_R2,aes(x=variable,y=value))+
geom_boxplot()
grid.arrange(gR1, gR2, ncol = 2)
don_R1<-melt(donnees[,(1:18)])
gR1=ggplot(don_R1,aes(x=variable,y=value))+
geom_boxplot()
don_R2<-melt(donnees[,(19:36)])
gR2=ggplot(don_R2,aes(x=variable,y=value))+
geom_boxplot()
grid.arrange(gR1, gR2, nrow = 2)