INSTITUT NATIONAL
‘ DES SCIENCES

APPLIQUEES

TOULOUSE

RAPPORT BE C++

Questions pour un champion

Binbme 2
MONTAIGU Emilie
OUVRARD Marine

18 janvier 2026




Introduction

Dans le cadre du bureau d’étude sur le langage C++, nous avons réalisé un quiz nommé « Questions
pour un champion ». Le but était de concevoir une bibliotheque modulaire qui permet d’interfacer
des périphériques et de créer une application utilisant cette bibliotheque.

Nous voulions créer un projet éducatif et amusant c’est pour cela que nous nous sommes tournées
vers l'idée d’un quiz. L'application propose cing thématiques différentes de questions avec 10
guestions par théme. Nous avons eu besoin, en plus de la carte ESP8266 NodeMCU, d’un écran LCD
RGB (protocole 12C) pour afficher ce gu’on voulait, de deux boutons (un en relief et un plat), d’'une
LED rouge pour signaler les erreurs, de cables pour les connexions et d’un cable USB pour relier la
carte a l'ordinateur.

L'environnement de développement requis comprend I'Arduino IDE, le support ESP8266 pour
Arduino et la bibliotheque rgb_lcd nécessaire pour piloter I'écran LCD.

Architecture logicielle

Diagramme de classe

periph

-id : char

+ periph(void) : void

b e

rgb_lcd actionneur capteur

- pin :int

voir arduino.h + actionneur(void) : void

+ capteur(void) : void

+ capteur(int) : void

+ init(void) : void

+ getPin(void) : int
led

ecran bouton
+ ecran(void) : void g{g; '"l‘)tool - etat : bool
\‘\\\ + bouton(void) : void

+ led(void) : void + bouton(int) : void

+ led(int) : void

+ int(void) : void

+ cligno(void) : void
+ getPin(void) : int

+ lire_etat(void) : bool
+ operatorl(void) : bool
+ choix_bouton(bouton,
bouton) : bool

™ 7

Use P
A Use

1 1 5 i’s"t‘ K

Application i) bdd

+ ledPin : const int

+ colorR : const int

+ colorG : const int

+ colorB : const int
+lcd : ecran

+ boutonRelief : bouton
+ boutonPlat : bouton
+ledRouge : led

+ gameOver : bool
+nb_erreurs : int

+ defileTexte(ecran,String) : void
+ listequestions_init(ecran,
bouton, bouton, led) : void

+ play(ecran, list=string= , int [],
bouton, bouton, led) : void

+ Application(void) : void
+ ~Application(void) : void
+ init(void) : void

+ run(void) : void

W



Justification des choix de classe
Classe periph : Classe de base représentant tout périphérique connecté. Elle posséde I'attribut id
commun a tous les composants.

Classe capteur : Hérite de periph. Représente les périphériques d'entrée (lecture de données).
Classe actionneur : Hérite de periph. Représente les périphériques de sortie (affichage, lumiére).

Classe bouton : Hérite de capteur. Capteur avec état booléen, méthode lire_etat() et surcharge de
|'opérateur !.

Classe led : Hérite de actionneur. Actionneur avec pin et etat, méthodes init() et cligno().

Classe ecran : Héritage multiple de actionneur et rgb_Icd pour combiner fonctionnalités d'affichage
et controle de la couleur de I'écran.

Eléments C++ utilisés
Héritage : périphériques - capteurs/actionneurs - composants

Héritage multiple : ecran hérite de actionneur et rgb_lcd

Surcharge d'opérateur : L'opérateur operator!() est redéfini dans la classe bouton pour faciliter la
lecture de I'état du bouton.

STL : utilisation de la Standard Template Library avec les conteneurs list et string (via #include <list>
et #include <string>) pour stocker les questions de maniere dynamique.

Exceptions : principe de gameOver avec un booléen. Si I'utilisateur fait plus de 3 fautes, sa partie
s’arréte.

Architecture matérielle

Schéma de connexion
ESP8266 NodeMCU

- D8 - Bouton Relief (capteur)

- D6 - Bouton Plat (capteur)

- D7 - LED Rouge (actionneur)

- 12C - Ecran LCD RGB (actionneur)

Schéma de fonctionnement
Initialisation : Configuration des pins, initialisation de I'écran LCD

Sélection du theme : Affichage des theémes disponibles, sélection par boutons

Déroulement du quiz : Affichage de la question avec défilement du texte a I'écran, lecture des
boutons pour la réponse (relief = vrai, plat = faux), validation et feedback optionnel (si réponse

incorrecte, affichage du nombre d’erreurs et LED rouge) puis passage a la question suivante.



Fin de partie : Si pas de game over (moins de 3 fautes), affichage du score et message de réussite.
Sinon, affichage de « GAME OVER ».

Relance d’une nouvelle partie.

Conclusion

But atteint

Le projet a permis de créer une bibliothéque orientée objet modulaire et extensible qui respecte les
principes de la conception orientée objet et de la programmation orientée objet. L'application est
fonctionnelle avec une interface utilisateur intuitive construite a partir des éléments Grove.

Problemes rencontrés

La gestion du défilement de texte sur I'écran LCD 16x2 a représenté probléme. L'affichage étant
limité a deux lignes de 16 caracteéres, il a fallu implémenter une fonction de défilement progressif
pour permettre la lecture compléte des questions longues.

La synchronisation des boutons a également posé probleme en raison du rebond. Lors d'un appui sur
un bouton, plusieurs impulsions parasites peuvent étre détectées nécessitant la mise en place d'un
mécanisme de filtrage temporel pour éviter les lectures multiples non désirées et I'utilisation de
délais pour laisser le temps au systéme.

Perspectives d’évolution

Le projet offre de nombreuses possibilités d'amélioration et d'extension. L'ajout d'une connexion
WiFi permettrait de télécharger des quiz depuis internet ce qui permettrait d’avoir des nouveaux
contenus régulierement mis a jour sans nécessiter de reprogrammer la carte a chaque fois. L’ajout
d'un buzzer pourrait fournir un feedback sonore pour améliorer I'expérience utilisateur lors des
bonnes ou mauvaises réponses.

W



