TP1_Intro_Modelisation/EP.py
2023-05-09 22:19:36 +02:00

42 lines
No EOL
1.2 KiB
Python

import numpy as np
import math
import matplotlib.pyplot as plt
import EA
def acos(X):
Y=np.zeros_like(X)
for i in range(len(X)):
Y[i]=math.acos(X[i])
return Y
def EP1(xi,alpha):
return alpha*xi - acos((1-alpha*(1-np.cos(xi)))
/(1-EA.EA1(xi,alpha)))
def EP2(xi,alpha):
return alpha*xi - acos((1-(alpha**2)*(1-np.cos(xi)))
/(1-EA.EA2(xi,alpha)))
def EP3(xi,alpha):
theta=xi/2
return alpha*xi - acos((1-2*alpha*(np.sin(theta)**2)*(1-(1-alpha)*(np.cos(theta)**2)))
/(1-EA.EA3(xi,alpha)))
xi = np.linspace(0,np.pi/8,1000)
#print(EP1(xi,0.5),"\n",EP3(xi,0.5))
for alpha in [0.2,0.5,0.8]:
fig=plt.figure(1)
plt.title(r"Erreur de phase en fonction de $\zeta$ pour CFL = "+str(alpha))
plt.xlabel(r'$\zeta$')
plt.ylabel(r'$E_\phi$')
plt.axis([-0.02 , np.pi/8+0.02 , -0.0010, 0.0030])
plt.plot(xi,abs(EP1(xi,alpha)),'-g',label="Schema 1")
plt.plot(xi,abs(EP2(xi,alpha)),'-b',label="Schema 2")
plt.plot(xi,abs(EP3(xi,alpha)),'-r',label="Schema 3")
plt.legend(loc='upper left')
plt.grid(True)
plt.show(block=False)
#plt.savefig("EP"+"_CFL ="+str(alpha)+".png")
plt.close('all')