177 lines
5.6 KiB
Python
177 lines
5.6 KiB
Python
from random import random
|
|
from math import floor, sqrt
|
|
from statistics import mean, variance
|
|
# from matplotlib import pyplot
|
|
|
|
def simulate_NFBP(N):
|
|
"""
|
|
Tries to simulate T_i, V_i and H_n for N boxes of random size.
|
|
"""
|
|
i = 0 # Nombre de boites
|
|
R = [0] # Remplissage de la i-eme boite
|
|
T = [0] # Nombre de paquets de la i-eme boite
|
|
V = [0] # Taille du premier paquet de la i-eme boite
|
|
H = [] # Rang de la boite contenant le n-ieme paquet
|
|
for n in range(N):
|
|
size = random()
|
|
if R[i] + size >= 1:
|
|
# Il y n'y a plus de la place dans la boite pour le paquet.
|
|
# On passe à la boite suivante (qu'on initialise)
|
|
i += 1
|
|
R.append(0)
|
|
T.append(0)
|
|
V.append(0)
|
|
R[i] += size
|
|
T[i] += 1
|
|
if V[i] == 0:
|
|
# C'est le premier paquet de la boite
|
|
V[i] = size
|
|
H.append(i)
|
|
|
|
return {
|
|
"i": i,
|
|
"R": R,
|
|
"T": T,
|
|
"V": V,
|
|
"H": H
|
|
}
|
|
|
|
|
|
def stats_NFBP(R, N):
|
|
"""
|
|
Runs R runs of NFBP (for N packages) and studies distribution, variance, mean...
|
|
"""
|
|
print("Running {} NFBP simulations with {} packages".format(R, N))
|
|
I = []
|
|
H = [[] for _ in range(N)] # List of empty lists
|
|
|
|
for i in range(R):
|
|
sim = simulate_NFBP(N)
|
|
I.append(sim["i"])
|
|
for n in range(N):
|
|
H[n].append(sim["H"][n])
|
|
|
|
print("Mean number of boxes : {} (variance {})".format(mean(I), variance(I)))
|
|
|
|
for n in range(N):
|
|
print("Mean H_{} : {} (variance {})".format(n, mean(H[n]), variance(H[n])))
|
|
|
|
def stats_NFBP_iter(R, N):
|
|
"""
|
|
Runs R runs of NFBP (for N packages) and studies distribution, variance, mean...
|
|
Calculates stats during runtime instead of after to avoid excessive memory usage.
|
|
"""
|
|
print("Running {} NFBP simulations with {} packages".format(R, N))
|
|
ISum = 0
|
|
IVarianceSum = 0
|
|
HSum = [0 for _ in range(N)]
|
|
HSumVariance = [0 for _ in range(N)]
|
|
|
|
for i in range(R):
|
|
sim = simulate_NFBP(N)
|
|
ISum += sim["i"]
|
|
IVarianceSum += sim["i"]**2
|
|
for n in range(N):
|
|
HSum[n] += sim["H"][n]
|
|
HSumVariance[n] += sim["H"][n]**2
|
|
|
|
I = ISum/R
|
|
IVariance = sqrt(IVarianceSum/(R-1) - I**2)
|
|
|
|
print("Mean number of boxes : {} (variance {})".format(I, IVariance))
|
|
for n in range(n):
|
|
Hn = HSum[n]/R
|
|
HVariance = sqrt(HSumVariance[n]/(R-1) - Hn**2)
|
|
print("Index of box containing the {}th package (H_{}) : {} (variance {})".format(n, n, Hn, HVariance))
|
|
|
|
def simulate_NFDBP(N):
|
|
"""
|
|
Tries to simulate T_i, V_i and H_n for N boxes of random size.
|
|
"""
|
|
i = 0 # Nombre de boites
|
|
R = [0] # Remplissage de la i-eme boite
|
|
T = [0] # Nombre de paquets de la i-eme boite
|
|
V = [0] # Taille du premier paquet de la i-eme boite
|
|
H = [] # Rang de la boite contenant le n-ieme paquet
|
|
for n in range(N):
|
|
size = random()
|
|
R[i] += size
|
|
T[i] += 1
|
|
if R[i] + size >= 1:
|
|
# Il y n'y a plus de la place dans la boite pour le paquet.
|
|
# On passe à la boite suivante (qu'on initialise)
|
|
i += 1
|
|
R.append(0)
|
|
T.append(0)
|
|
V.append(0)
|
|
|
|
if V[i] == 0:
|
|
# C'est le premier paquet de la boite
|
|
V[i] = size
|
|
H.append(i)
|
|
|
|
return {
|
|
"i": i,
|
|
"R": R,
|
|
"T": T,
|
|
"V": V,
|
|
"H": H
|
|
}
|
|
|
|
|
|
def stats_NFDBP(R, N):
|
|
"""
|
|
Runs R runs of NFDBP (for N packages) and studies distribution, variance, mean...
|
|
"""
|
|
print("Running {} NFDBP simulations with {} packages".format(R, N))
|
|
I = []
|
|
H = [[] for _ in range(N)] # List of empty lists
|
|
Tmean=[]
|
|
for i in range(R):
|
|
sim = simulate_NFDBP(N)
|
|
I.append(sim["i"])
|
|
for n in range(N):
|
|
H[n].append(sim["H"][n])
|
|
|
|
for k in range(sim["i"]):
|
|
# for o in range(sim["i"]):
|
|
Tmean+=sim["T"]
|
|
print("Mean number of boxes : {} (variance {})".format(mean(I), variance(I)))
|
|
|
|
for n in range(N):
|
|
print("Mean H_{} : {} (variance {})".format(n, mean(H[n]), variance(H[n])))
|
|
for k in range(int(mean(I))+1):
|
|
print(Tmean[7])
|
|
# print("Mean T_{} : {} (variance {})".format(k, mean(Tmean[k]), variance(Tmean[k])))
|
|
|
|
N = 10 ** 1
|
|
sim = simulate_NFBP(N)
|
|
|
|
print("Simulation NFBP pour {} packaets. Contenu des boites :".format(N))
|
|
for j in range(sim["i"] + 1):
|
|
remplissage = floor(sim["R"][j] * 100)
|
|
print("Boite {} : Rempli à {} % avec {} paquets. Taille du premier paquet : {}".format(j, remplissage, sim["T"][j],
|
|
sim["V"][j]))
|
|
|
|
print()
|
|
stats_NFBP(10 ** 4, 10)
|
|
|
|
N = 10 ** 1
|
|
sim = simulate_NFDBP(N)
|
|
print("Simulation NFDBP pour {} packaets. Contenu des boites :".format(N))
|
|
for j in range(sim["i"] + 1):
|
|
remplissage = floor(sim["R"][j] * 100)
|
|
print("Boite {} : Rempli à {} % avec {} paquets. Taille du premier paquet : {}".format(j, remplissage,
|
|
sim["T"][j],
|
|
sim["V"][j]))
|
|
|
|
print()
|
|
stats_NFDBP(10 ** 4, 10)
|
|
stats_NFBP_iter(10**6, 10)
|
|
|
|
#
|
|
# pyplot.plot([1, 2, 4, 4, 2, 1], color = 'red', linestyle = 'dashed', linewidth = 2,
|
|
# markerfacecolor = 'blue', markersize = 5)
|
|
# pyplot.ylim(0, 5)
|
|
# pyplot.title('Un exemple')
|
|
|