Compare commits

...

6 commit

作者 SHA1 備註 提交日期
Paul ALNET
7e0c5a84bb fix: correct NFDBP algo 2023-06-04 08:12:30 +02:00
Paul ALNET
cf7a4cf7a6 chore: move legacy output to unused function 2023-06-04 08:12:10 +02:00
Paul ALNET
0cdc13b869 chore: clean up "zero padding" 2023-06-04 08:11:26 +02:00
Paul ALNET
7bee845a97 chore: clean up outputs + add comments 2023-06-04 08:10:42 +02:00
Paul ALNET
5f56b578d2 fix: rename packages to items 2023-06-04 07:14:37 +02:00
Paul ALNET
d8b470c9d4 fix: rename boxes to bins 2023-06-04 07:14:30 +02:00

查看文件

@ -9,7 +9,7 @@ import matplotlib.pyplot as pt
def simulate_NFBP(N):
"""
Tries to simulate T_i, V_i and H_n for N packages of random size.
Tries to simulate T_i, V_i and H_n for N items of random size.
"""
i = 0 # Nombre de boites
R = [0] # Remplissage de la i-eme boite
@ -41,11 +41,12 @@ def simulate_NFBP(N):
}
# unused
def stats_NFBP(R, N):
"""
Runs R runs of NFBP (for N packages) and studies distribution, variance, mean...
Runs R runs of NFBP (for N items) and studies distribution, variance, mean...
"""
print("Running {} NFBP simulations with {} packages".format(R, N))
print("Running {} NFBP simulations with {} items".format(R, N))
I = []
H = [[] for _ in range(N)] # List of empty lists
@ -55,24 +56,29 @@ def stats_NFBP(R, N):
for n in range(N):
H[n].append(sim["H"][n])
print("Mean number of boxes : {} (variance {})".format(mean(I), variance(I)))
print("Mean number of bins : {} (variance {})".format(mean(I), variance(I)))
for n in range(N):
print("Mean H_{} : {} (variance {})".format(n, mean(H[n]), variance(H[n])))
def stats_NFBP_iter(R, N):
"""
Runs R runs of NFBP (for N packages) and studies distribution, variance, mean...
Runs R runs of NFBP (for N items) and studies distribution, variance, mean...
Calculates stats during runtime instead of after to avoid excessive memory usage.
"""
P=R*N
print("Running {} NFBP simulations with {} packages".format(R, N))
P=R*N # Total number of items
print("## Running {} NFBP simulations with {} items".format(R, N))
# number of bins
ISum = 0
IVarianceSum = 0
# index of the bin containing the n-th item
HSum = [0 for _ in range(N)]
HSumVariance = [0 for _ in range(N)]
# number of items in the i-th bin
Sum_T=[0 for _ in range(N)]
# size of the first item in the i-th bin
Sum_V=[0 for _ in range(N)]
for i in range(R):
sim = simulate_NFBP(N)
ISum += sim["i"]
@ -82,55 +88,56 @@ def stats_NFBP_iter(R, N):
HSumVariance[n] += sim["H"][n]**2
T=sim['T']
V=sim['V']
for i in range(N):
# ensure that T, V have the same length as Sum_T, Sum_V
for i in range(N - sim['i']):
T.append(0)
V.append(0)
Sum_T=[x+y for x,y in zip(Sum_T,T)]
Sum_V=[x+y for x,y in zip(Sum_V,V)]
#we use round to approximate variations of continuous variable V
# Sum_V= round(sim['V'],2))
Sum_T=[x/R for x in Sum_T]
Sum_V=[round(x/R,2) for x in Sum_V]
print(Sum_V)
#print(Sum_V)
I = ISum/R
IVariance = sqrt(IVarianceSum/(R-1) - I**2)
print("Mean number of boxes : {} (variance {})".format(I, IVariance),'\n')
print("Mean number of bins : {} (variance {})".format(I, IVariance),'\n')
# TODO clarify line below
print(" {} * {} iterations of T".format(R,N),'\n')
for n in range(N):
for n in range(min(N, 10)):
Hn = HSum[n]/R # moyenne
HVariance = sqrt(HSumVariance[n]/(R-1) - Hn**2) # Variance
print("Index of box containing the {}th package (H_{}) : {} (variance {})".format(n, n, Hn, HVariance))
print("Index of bin containing the {}th item (H_{}) : {} (variance {})".format(n, n, Hn, HVariance))
HSum=[x/R for x in HSum]
print(HSum)
# print(HSum)
#Plotting
fig = plt.figure()
#T plot
x = np.arange(N)
print(x)
# print(x)
ax = fig.add_subplot(221)
ax.bar(x,Sum_T, width=1,label='Empirical values', edgecolor="blue", linewidth=0.7,color='red')
ax.set(xlim=(0, N), xticks=np.arange(0, N),ylim=(0,3), yticks=np.linspace(0, 3, 5))
ax.set_ylabel('Items')
ax.set_xlabel('Boxes (1-{})'.format(N))
ax.set_title('T histogram for {} packages (Number of packages in each box)'.format(P))
ax.set_xlabel('Bins (1-{})'.format(N))
ax.set_title('T histogram for {} items (Number of items in each bin)'.format(P))
ax.legend(loc='upper left',title='Legend')
#V plot
bx = fig.add_subplot(222)
bx.bar(x,Sum_V, width=1,label='Empirical values', edgecolor="blue", linewidth=0.7,color='orange')
bx.set(xlim=(0, N), xticks=np.arange(0, N),ylim=(0, 1), yticks=np.linspace(0, 1, 10))
bx.set_ylabel('First item size')
bx.set_xlabel('Boxes (1-{})'.format(N))
bx.set_title('V histogram for {} packages (first package size of each box)'.format(P))
bx.set_xlabel('Bins (1-{})'.format(N))
bx.set_title('V histogram for {} items (first item size of each bin)'.format(P))
bx.legend(loc='upper left',title='Legend')
#H plot
#We will simulate this part for a asymptotic study
cx = fig.add_subplot(223)
cx.bar(x,HSum, width=1,label='Empirical values', edgecolor="blue", linewidth=0.7,color='green')
cx.set(xlim=(0, N), xticks=np.arange(0, N),ylim=(0, 10), yticks=np.linspace(0, N, 5))
cx.set_ylabel('Box ranking of n-item')
cx.set_ylabel('Bin ranking of n-item')
cx.set_xlabel('n-item (1-{})'.format(N))
cx.set_title('H histogram for {} packages'.format(P))
cx.set_title('H histogram for {} items'.format(P))
xb=linspace(0,N,10)
yb=Hn*xb/10
wb=HVariance*xb/10
@ -141,7 +148,8 @@ def stats_NFBP_iter(R, N):
def simulate_NFDBP(N):
"""
Tries to simulate T_i, V_i and H_n for N packages of random size.
Tries to simulate T_i, V_i and H_n for N items of random size.
Next Fit Dual Bin Packing : bins should overflow
"""
i = 0 # Nombre de boites
R = [0] # Remplissage de la i-eme boite
@ -150,20 +158,18 @@ def simulate_NFDBP(N):
H = [] # Rang de la boite contenant le n-ieme paquet
for n in range(N):
size = random()
R[i] += size
T[i] += 1
if R[i] + size >= 1:
if R[i] >= 1:
# Il y n'y a plus de la place dans la boite pour le paquet.
# On passe à la boite suivante (qu'on initialise)
# On passe à la boite suivante (qu'on initialise).
i += 1
R.append(0)
T.append(0)
V.append(0)
if V[i] == 0:
# C'est le premier paquet de la boite
V[i] = size
V.append(size)
H.append(i)
R[i] += size
T[i] += 1
return {
"i": i,
@ -176,10 +182,10 @@ def simulate_NFDBP(N):
def stats_NFDBP(R, N,t_i):
"""
Runs R runs of NFDBP (for N packages) and studies distribution, variance, mean...
Runs R runs of NFDBP (for N items) and studies distribution, variance, mean...
"""
print("Running {} NFDBP simulations with {} packages".format(R, N))
P=N*R
print("## Running {} NFDBP simulations with {} items".format(R, N))
P=N*R # Total number of items
I = []
H = [[] for _ in range(N)] # List of empty lists
T=[]
@ -203,7 +209,7 @@ def stats_NFDBP(R, N,t_i):
Sum_T=[x/R for x in Sum_T] #Experimental [Ti=k]
Sum_T=[x*100/(sum(Sum_T)) for x in Sum_T] #Pourcentage de la repartition des items
print("Mean number of boxes : {} (variance {})".format(mean(I), variance(I)))
print("Mean number of bins : {} (variance {})".format(mean(I), variance(I)))
for n in range(N):
print("Mean H_{} : {} (variance {})".format(n, mean(H[n]), variance(H[n])))
@ -214,8 +220,7 @@ def stats_NFDBP(R, N,t_i):
T_maths.append(1/(factorial(u-1))-1/factorial(u))
E=0
sigma2=0
print("hep")
print(T_maths)
# print(T_maths)
for p in range(len(T_maths)):
E=E+(p+1)*T_maths[p]
sigma2=((T_maths[p]-E)**2)/(len(T_maths)-1)
@ -231,8 +236,8 @@ def stats_NFDBP(R, N,t_i):
ax.bar(x,Sum_T, width=1,label='Empirical values', edgecolor="blue", linewidth=0.7,color='red')
ax.set(xlim=(0, N), xticks=np.arange(0, N),ylim=(0,20), yticks=np.linspace(0, 20, 2))
ax.set_ylabel('Items(n) in %')
ax.set_xlabel('Boxes (1-{})'.format(N))
ax.set_title('Items percentage for each box and {} packages (Number of packages in each box)'.format(P))
ax.set_xlabel('Bins (1-{})'.format(N))
ax.set_title('Items percentage for each bin and {} items (Number of items in each bin)'.format(P))
ax.legend(loc='upper left',title='Legend')
#Mathematical P(Ti=k) plot. It shows the Ti(t_i) law with the probability of each number of items.
@ -241,8 +246,8 @@ def stats_NFDBP(R, N,t_i):
bx.hist(Tk[t_i],bins=10, width=1,label='Empirical values', edgecolor="blue", linewidth=0.7,color='red')
bx.set(xlim=(0, N), xticks=np.arange(0, N),ylim=(0,len(Tk[t_i])), yticks=np.linspace(0, 1, 1))
bx.set_ylabel('P(T{}=i)'.format(t_i))
bx.set_xlabel('Boxes i=(1-{}) in %'.format(N))
bx.set_title('T{} histogram for {} packages (Number of packages in each box)'.format(t_i,P))
bx.set_xlabel('Bins i=(1-{}) in %'.format(N))
bx.set_title('T{} histogram for {} items (Number of items in each bin)'.format(t_i,P))
bx.legend(loc='upper left',title='Legend')
#Loi mathematique
@ -251,11 +256,13 @@ def stats_NFDBP(R, N,t_i):
cx.bar(x,T_maths, width=1,label='Theoretical values', edgecolor="blue", linewidth=0.7,color='red')
cx.set(xlim=(0, N), xticks=np.arange(0, N),ylim=(0,100), yticks=np.linspace(0, 100, 10))
cx.set_ylabel('P(T{}=i)'.format(t_i))
cx.set_xlabel('Boxes i=(1-{})'.format(N))
cx.set_xlabel('Bins i=(1-{})'.format(N))
cx.set_title('Theoretical T{} values in %'.format(t_i))
cx.legend(loc='upper left',title='Legend')
plt.show()
# unused
def basic_demo():
N = 10 ** 1
sim = simulate_NFBP(N)
@ -277,6 +284,6 @@ for j in range(sim["i"] + 1):
sim["T"][j],
sim["V"][j]))
print()
stats_NFBP_iter(10**3, 10)
print('\n\n')
stats_NFDBP(10 ** 3, 10,1)