Compare commits

..

No commits in common. "67bc7efd5ca42c3048600e86f63104775e4bcbd3" and "316c910c3a50b2a9467abdc7a1f9d958cc7d0a2e" have entirely different histories.

View file

@ -242,7 +242,6 @@ def stats_NFDBP(R, N, t_i):
for n in range(N):
print("Mean H_{} : {} (variance {})".format(n, mean(H[n]), variance(H[n])))
# TODO variance for T_k doesn't see right
print("Mean T_{} : {} (variance {})".format(k, mean(Sum_T), variance(Sum_T)))
# Loi math
for u in range(N):
@ -286,9 +285,8 @@ def stats_NFDBP(R, N, t_i):
P
)
)
ax.legend(loc="upper right", title="Legend")
ax.legend(loc="upper left", title="Legend")
# TODO fix the graph below
# Mathematical P(Ti=k) plot. It shows the Ti(t_i) law with the probability of each number of items.
print(len(Tk[t_i]))
bx = fig.add_subplot(222)
@ -312,7 +310,7 @@ def stats_NFDBP(R, N, t_i):
bx.set_title(
"T{} histogram for {} items (Number of items in each bin)".format(t_i, P)
)
bx.legend(loc="upper right", title="Legend")
bx.legend(loc="upper left", title="Legend")
# Loi mathematique
print(T_maths)
@ -335,7 +333,7 @@ def stats_NFDBP(R, N, t_i):
cx.set_ylabel("P(T{}=i)".format(t_i))
cx.set_xlabel("Bins i=(1-{})".format(N))
cx.set_title("Theoretical T{} values in %".format(t_i))
cx.legend(loc="upper right", title="Legend")
cx.legend(loc="upper left", title="Legend")
plt.show()