Salīdzināt revīzijas

..

Nav kopīgu revīziju. Atzariem "06b9500efc0099904ba3701d303496b1251e384d" un "df98bff2857a126a230aef7baa135f10d9b2b31d" ir pilnībā atšķirīga izmaiņu vēsture.

Parādīt failu

@ -114,42 +114,7 @@ we store each item in the next bin if it fits, otherwise we open a new bin.
will be of random sizes between $ 0 $ and $ 1 $. We will run X simulations % TODO
with 10 packets.
\subsection{Variables used in models}
We use the following variables in our algorithms and models :
\begin{itemize}
\item $ U_n $ : the size of the $ n $-th item. $ (U_n)_{n \in \mathbb{N}} $
denotes the mathematical sequence of random variables of uniform
distribution on $ [0, 1] $ representing the items' sizes.
\item $ T_i $ : the number of items in the $ i $-th bin.
\item $ V_i $ : the size of the first item in the $ i $-th bin.
\item $ H_n $ : the number of bins required to store $ n $ items.
\end{itemize}
Mathematically, the NFBP algorithm imposes the following constraint on the first box :
\begin{align*}
T_1 = k \iff & U_1 + U_2 + \ldots + U_{k-1} < 1 \\
\text{ and } & U_1 + U_2 + \ldots + U_{k} \geq 1 \qquad \text{ with } k \geq 2
\end{align*}
\subsection{Implementation and results}
We implemented the NFBP algorithm in Python \footnotemark, for its ease of use
and broad recommendation. We used the \texttt{random} library to generate
random numbers between $ 0 $ and $ 1 $ and \texttt{matplotlib} to plot the
results.
\footnotetext{The code is available in Annex \ref{annex:probabilistic}}
\subsubsection{Variables used in models}
@ -158,8 +123,6 @@ results.
\section{Next Fit Dual Bin Packing algorithm}
The variables used are the same as for NFBP.
\subsection{La giga demo}
Let $ k \in \mathbb{N} $. Let $ (U_n)_{n \in \mathbb{N}} $ be a sequence of
@ -262,10 +225,8 @@ $ f_{U_{k-1}}(y) = 1 $.
\section{Complexity and implementation optimization}
Both the NFBP and NFDBP algorithms have a linear complexity $ O(n) $, as we
only need to iterate over the items once. While the algorithms themselves are
linear, calculating the statistics may not not be. In this section, we will
discuss how to optimize the implementation of the statistical analysis.
The NFBP algorithm has a linear complexity $ O(n) $, as we only need to iterate
over the items once.
\subsection{Performance optimization}