Adding T,V,H graphs for NFBP algorithm

This commit is contained in:
Clément Lacau 2023-06-03 01:01:13 +02:00
parent e9dbc054fe
commit ebf87d231c

77
Probas.py Normal file → Executable file
View file

@ -1,11 +1,14 @@
#!/usr/bin/python3
from random import random
from math import floor, sqrt
from statistics import mean, variance
# from matplotlib import pyplot
from matplotlib import pyplot as plt
from pylab import *
import numpy as np
def simulate_NFBP(N):
"""
Tries to simulate T_i, V_i and H_n for N boxes of random size.
Tries to simulate T_i, V_i and H_n for N packages of random size.
"""
i = 0 # Nombre de boites
R = [0] # Remplissage de la i-eme boite
@ -61,12 +64,15 @@ def stats_NFBP_iter(R, N):
Runs R runs of NFBP (for N packages) and studies distribution, variance, mean...
Calculates stats during runtime instead of after to avoid excessive memory usage.
"""
P=R*N
print("Running {} NFBP simulations with {} packages".format(R, N))
ISum = 0
IVarianceSum = 0
HSum = [0 for _ in range(N)]
HSumVariance = [0 for _ in range(N)]
Sum_T=[]
Sum_V=[]
Sum_H=[]
for i in range(R):
sim = simulate_NFBP(N)
ISum += sim["i"]
@ -74,11 +80,49 @@ def stats_NFBP_iter(R, N):
for n in range(N):
HSum[n] += sim["H"][n]
HSumVariance[n] += sim["H"][n]**2
Sum_T=Sum_T+sim['T']
Sum_H=Sum_H+sim['H']
for k in range(sim['i']):
#we use round to approximate variations of continuous variable V
Sum_V.append(round(sim['V'][k],2))
I = ISum/R
IVariance = sqrt(IVarianceSum/(R-1) - I**2)
print("Mean number of boxes : {} (variance {})".format(I, IVariance),'\n')
print(" {} * {} iterations of T".format(R,N),'\n')
print("Mean number of boxes : {} (variance {})".format(I, IVariance))
#Plotting
#fig = plt.figure()
#ax = fig.add_subplot(111)
#matplotlib.stairs(Sum_T,bins=[0,1,2,3,4])
#ax.hist(Sum_T, bins=8, edgecolor='k', density=True, label='Valeurs empiriques')
#ax.set(xlim=(0, 8), xticks=np.arange(1, 8),
#ylim=(0, 500), yticks=np.linspace(0, 56, 9))
#ax.legend()
#plt.show()
#plt.style.use('_mpl-gallery')
#make data
#plot:
#fig = plt.subplots()
fig = plt.figure()
#T plot
ax = fig.add_subplot(221)
ax.hist(Sum_T, bins=6, linewidth=0.5, edgecolor="white", label='Empirical values')
ax.set(xlim=(0, 6), xticks=np.arange(0, 6),ylim=(0, 6000), yticks=np.linspace(0, 6000, 9))
ax.set_title('T histogram for {} packages (Number of packages in each box)'.format(P))
ax.legend()
#V plot
bx = fig.add_subplot(222)
bx.hist(Sum_V, bins=10, linewidth=0.5, edgecolor="white", label='Empirical values')
bx.set(xlim=(0, 1), xticks=np.arange(0, 1),ylim=(0, 1000), yticks=np.linspace(0, 1000, 9))
bx.set_title('V histogram for {} packages (first package size of each box)'.format(P))
bx.legend()
#H plot
cx = fig.add_subplot(223)
cx.hist(Sum_H, bins=10, linewidth=0.5, edgecolor="white", label='Empirical values')
cx.set(xlim=(0, 10), xticks=np.arange(0, 10),ylim=(0, 2000), yticks=np.linspace(0, 2000, 9))
cx.set_title('H histogram for {} packages'.format(P))
cx.legend()
plt.show()
for n in range(n):
Hn = HSum[n]/R
HVariance = sqrt(HSumVariance[n]/(R-1) - Hn**2)
@ -86,7 +130,7 @@ def stats_NFBP_iter(R, N):
def simulate_NFDBP(N):
"""
Tries to simulate T_i, V_i and H_n for N boxes of random size.
Tries to simulate T_i, V_i and H_n for N packages of random size.
"""
i = 0 # Nombre de boites
R = [0] # Remplissage de la i-eme boite
@ -127,22 +171,24 @@ def stats_NFDBP(R, N):
I = []
H = [[] for _ in range(N)] # List of empty lists
Tmean=[]
T=[]
for i in range(R):
sim = simulate_NFDBP(N)
I.append(sim["i"])
for n in range(N):
H[n].append(sim["H"][n])
T=sim["T"]
for k in range(sim["i"]):
# for o in range(sim["i"]):
Tmean+=sim["T"]
#Tmean+=sim["T"]
Tmean.append(T[k])
print("Mean number of boxes : {} (variance {})".format(mean(I), variance(I)))
for n in range(N):
print("Mean H_{} : {} (variance {})".format(n, mean(H[n]), variance(H[n])))
for k in range(int(mean(I))+1):
print(Tmean[7])
# print("Mean T_{} : {} (variance {})".format(k, mean(Tmean[k]), variance(Tmean[k])))
for k in range(int(sim["i"])):
print("Mean T_{} : {} (variance {})".format(k, mean(Tmean), variance(Tmean)))
N = 10 ** 1
sim = simulate_NFBP(N)
@ -154,7 +200,7 @@ for j in range(sim["i"] + 1):
sim["V"][j]))
print()
stats_NFBP(10 ** 4, 10)
stats_NFBP(10 ** 3, 10)
N = 10 ** 1
sim = simulate_NFDBP(N)
@ -166,12 +212,11 @@ for j in range(sim["i"] + 1):
sim["V"][j]))
print()
stats_NFDBP(10 ** 4, 10)
stats_NFBP_iter(10**6, 10)
stats_NFBP_iter(10**3, 10)
stats_NFDBP(10 ** 3, 10)
#
#pyplot.plot([1, 2, 4, 4, 2, 1], color = 'red', linestyle = 'dashed', linewidth = 2,
#markerfacecolor = 'blue', markersize = 5)
#pyplot.ylim(0, 5)
#pyplot.title('Un exemple')
#show()