From bbe25c3d4cf3fae22ee41f4e9f32a4b48dd5f5e8 Mon Sep 17 00:00:00 2001 From: Paul ALNET Date: Sun, 4 Jun 2023 22:16:30 +0200 Subject: [PATCH] tex: NFDBP add expected value T_i --- latex/content.tex | 23 +++++++++++++++++++++++ 1 file changed, 23 insertions(+) diff --git a/latex/content.tex b/latex/content.tex index 5699d70..2bca0ca 100644 --- a/latex/content.tex +++ b/latex/content.tex @@ -396,9 +396,32 @@ Finally, plugging this into \eqref{eq:prob} gives us P(T_i = k) = P(A_{k-1}) - P(A_{k}) = \frac{1}{(k-1)!} - \frac{1}{k!} \qquad \forall k \geq 2 \] +\subsection{Expected value of $ T_i $} +We now compute the expected value $ \mu $ and variance $ \sigma^2 $ of $ T_i $. +\begin{align*} + \mu = E(T_i) & = \sum_{k=2}^{\infty} k \cdot P(T_i = k) \\ + & = \sum_{k=2}^{\infty} (\frac{k}{(k-1)!} - \frac{1}{(k-1)!}) \\ + & = \sum_{k=2}^{\infty} \frac{k-1}{(k-1)!} \\ + & = \sum_{k=0}^{\infty} \frac{1}{k!} \\ + & = e \\ +\end{align*} +\begin{align*} + E({T_i}^2) & = \sum_{k=2}^{\infty} k^2 \cdot P(T_i = k) \\ + & = \sum_{k=2}^{\infty} (\frac{k^2}{(k-1)!} - \frac{k}{(k-1)!}) \\ + & = \sum_{k=2}^{\infty} \frac{(k-1)k}{(k-1)!} \\ + & = \sum_{k=2}^{\infty} \frac{k}{(k-2)!} \\ + & = \sum_{k=0}^{\infty} \frac{k+2}{k!} \\ + & = \sum_{k=0}^{\infty} (\frac{1}{(k-1)!} + \frac{2}{(k)!}) \\ + & = \sum_{k=0}^{\infty} \frac{1}{(k)!} - 1 + 2e \\ + & = 3e - 1 +\end{align*} + +\begin{align*} + \sigma^2 = E({T_i}^2) - E(T_i)^2 = 3e - 1 - e^2 +\end{align*} \section{Complexity and implementation optimization}