tex: add NFDP math spec
This commit is contained in:
parent
bcfbec57ba
commit
8921d8c5df
1 changed files with 12 additions and 5 deletions
|
@ -147,8 +147,7 @@ NFBP algorithm. The yellow item is stored in bin 2, while it could fit in bin
|
||||||
1, because the purple item is considered first and is too large to fit.
|
1, because the purple item is considered first and is too large to fit.
|
||||||
|
|
||||||
\paragraph{} Each bin will have a fixed capacity of $ 1 $ and items and items
|
\paragraph{} Each bin will have a fixed capacity of $ 1 $ and items and items
|
||||||
will be of random sizes between $ 0 $ and $ 1 $. We will run X simulations % TODO
|
will be of random sizes between $ 0 $ and $ 1 $.
|
||||||
with 10 packets.
|
|
||||||
|
|
||||||
\subsection{Variables used in models}
|
\subsection{Variables used in models}
|
||||||
|
|
||||||
|
@ -171,8 +170,8 @@ We use the following variables in our algorithms and models :
|
||||||
Mathematically, the NFBP algorithm imposes the following constraint on the first box :
|
Mathematically, the NFBP algorithm imposes the following constraint on the first box :
|
||||||
|
|
||||||
\begin{align*}
|
\begin{align*}
|
||||||
T_1 = k \iff & U_1 + U_2 + \ldots + U_{k-1} < 1 \\
|
T_1 = k \iff & U_1 + U_2 + \ldots + U_{k} < 1 \\
|
||||||
\text{ and } & U_1 + U_2 + \ldots + U_{k} \geq 1 \qquad \text{ with } k \geq 2
|
\text{ and } & U_1 + U_2 + \ldots + U_{k+1} \geq 1 \qquad \text{ with } k \geq 1 \\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
|
|
||||||
|
@ -242,6 +241,14 @@ less bins than NFBP, due to less stringent constraints. The top of the bin is
|
||||||
effectively removed, allowing for an extra item to be stored in the bin. We can
|
effectively removed, allowing for an extra item to be stored in the bin. We can
|
||||||
easily see how with NFDBP each bin can at least contain two items.
|
easily see how with NFDBP each bin can at least contain two items.
|
||||||
|
|
||||||
|
\paragraph{} The variables used are the same as for NFBP. Mathematically, the
|
||||||
|
new constraints on the first bin can be expressed as follows :
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
T_1 = k \iff & U_1 + U_2 + \ldots + U_{k-1} < 1 \\
|
||||||
|
\text{ and } & U_1 + U_2 + \ldots + U_{k} \geq 1 \qquad \text{ with } k \geq 2 \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
\subsection{La giga demo}
|
\subsection{La giga demo}
|
||||||
|
|
||||||
Let $ k \in \mathbb{N} $. Let $ (U_n)_{n \in \mathbb{N}} $ be a sequence of
|
Let $ k \in \mathbb{N} $. Let $ (U_n)_{n \in \mathbb{N}} $ be a sequence of
|
||||||
|
@ -288,7 +295,7 @@ $ U_1 $ and $ U_2 $ are independent, so
|
||||||
& = \begin{cases}
|
& = \begin{cases}
|
||||||
1 & \text{if } x \in [0, 1] \text{ and } y \in [0, 1] \\
|
1 & \text{if } x \in [0, 1] \text{ and } y \in [0, 1] \\
|
||||||
0 & \text{otherwise} \\
|
0 & \text{otherwise} \\
|
||||||
\end{cases} \\
|
\end{cases} \\
|
||||||
\end{align*}
|
\end{align*}
|
||||||
|
|
||||||
Hence,
|
Hence,
|
||||||
|
|
Loading…
Reference in a new issue