tex: add performance analysis annex
This commit is contained in:
parent
00cc5befc7
commit
87a8bbbf0f
3 changed files with 61 additions and 3 deletions
57
latex/annex-performance.tex
Normal file
57
latex/annex-performance.tex
Normal file
|
@ -0,0 +1,57 @@
|
||||||
|
For simplicity, we only include the script for the improved algorithm. For the
|
||||||
|
intuitive algorithm, simply replace the algorithm. The imports timing and memory
|
||||||
|
usage tracking code are nearly identical.
|
||||||
|
|
||||||
|
\begin{lstlisting}[language=python]
|
||||||
|
#!/usr/bin/python3
|
||||||
|
import tracemalloc
|
||||||
|
from random import random
|
||||||
|
from math import floor, sqrt
|
||||||
|
#from statistics import mean, variance
|
||||||
|
from time import perf_counter
|
||||||
|
|
||||||
|
# starting the memory monitoring
|
||||||
|
tracemalloc.start()
|
||||||
|
|
||||||
|
start_time = perf_counter()
|
||||||
|
|
||||||
|
# store memory consumption before
|
||||||
|
current_before, peak_before = tracemalloc.get_traced_memory()
|
||||||
|
|
||||||
|
# algorithm (part to replace)
|
||||||
|
N = 10**6
|
||||||
|
Tot = 0
|
||||||
|
Tot2 = 0
|
||||||
|
for _ in range(N):
|
||||||
|
item = random()
|
||||||
|
Tot += item
|
||||||
|
Tot2 += item ** 2
|
||||||
|
mean = Tot / N
|
||||||
|
variance = Tot2 / (N-1) - mean**2
|
||||||
|
|
||||||
|
# store memory after
|
||||||
|
current_after, peak_after = tracemalloc.get_traced_memory()
|
||||||
|
|
||||||
|
end_time = perf_counter()
|
||||||
|
|
||||||
|
print("mean :", mean)
|
||||||
|
print("variance :", variance)
|
||||||
|
|
||||||
|
# displaying the memory usage
|
||||||
|
print("Used memory before : {} B (current), {} B (peak)".format(current_before,peak_before))
|
||||||
|
print("Used memory after : {} B (current), {} B (peak)".format(current_after,peak_after))
|
||||||
|
print("Used memory : {} B".format(peak_after - current_before))
|
||||||
|
print("Time : {} ms".format((end_time - start_time) * 1000))
|
||||||
|
|
||||||
|
tracemalloc.stop()
|
||||||
|
\end{lstlisting}
|
||||||
|
|
||||||
|
Example output:
|
||||||
|
\begin{lstlisting}[language=python]
|
||||||
|
mean : 0.5002592040785124
|
||||||
|
variance : 0.0833757719902084
|
||||||
|
Used memory before : 0 B (current), 0 B (peak)
|
||||||
|
Used memory after : 1308 B (current), 1336 B (peak)
|
||||||
|
Used memory : 1336 B
|
||||||
|
Time : 535.1873079998768 ms
|
||||||
|
\end{lstlisting}
|
|
@ -154,7 +154,7 @@ We set out to study the resource consumption of the algorithms. We implemented
|
||||||
the above formulae to calculate the mean and variance of $ N = 10^6 $ random
|
the above formulae to calculate the mean and variance of $ N = 10^6 $ random
|
||||||
numbers. We wrote the following algorithms \footnotemark :
|
numbers. We wrote the following algorithms \footnotemark :
|
||||||
|
|
||||||
\footnotetext{The full code used to measure performance can be found in Annex X.}
|
\footnotetext{The full code used to measure performance can be found in Annex \ref{annex:performance}.}
|
||||||
% TODO annex
|
% TODO annex
|
||||||
|
|
||||||
\paragraph{Intuitive algorithm} Store values first, calculate later
|
\paragraph{Intuitive algorithm} Store values first, calculate later
|
||||||
|
|
|
@ -106,9 +106,10 @@
|
||||||
\clearpage
|
\clearpage
|
||||||
\pagenumbering{Roman}
|
\pagenumbering{Roman}
|
||||||
|
|
||||||
\subsection{Extrait de texte}
|
\subsection{Performance analysis script}
|
||||||
|
\label{annex:performance}
|
||||||
|
|
||||||
Eng'croyable texte
|
\input{annex-performance}
|
||||||
|
|
||||||
\clearpage
|
\clearpage
|
||||||
|
|
||||||
|
|
Loading…
Reference in a new issue