chore: clean up outputs + add comments
This commit is contained in:
parent
5f56b578d2
commit
7bee845a97
1 changed files with 25 additions and 20 deletions
31
Probas.py
31
Probas.py
|
@ -41,6 +41,7 @@ def simulate_NFBP(N):
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
# unused
|
||||||
def stats_NFBP(R, N):
|
def stats_NFBP(R, N):
|
||||||
"""
|
"""
|
||||||
Runs R runs of NFBP (for N items) and studies distribution, variance, mean...
|
Runs R runs of NFBP (for N items) and studies distribution, variance, mean...
|
||||||
|
@ -65,14 +66,19 @@ def stats_NFBP_iter(R, N):
|
||||||
Runs R runs of NFBP (for N items) and studies distribution, variance, mean...
|
Runs R runs of NFBP (for N items) and studies distribution, variance, mean...
|
||||||
Calculates stats during runtime instead of after to avoid excessive memory usage.
|
Calculates stats during runtime instead of after to avoid excessive memory usage.
|
||||||
"""
|
"""
|
||||||
P=R*N
|
P=R*N # Total number of items
|
||||||
print("Running {} NFBP simulations with {} items".format(R, N))
|
print("## Running {} NFBP simulations with {} items".format(R, N))
|
||||||
|
# number of bins
|
||||||
ISum = 0
|
ISum = 0
|
||||||
IVarianceSum = 0
|
IVarianceSum = 0
|
||||||
|
# index of the bin containing the n-th item
|
||||||
HSum = [0 for _ in range(N)]
|
HSum = [0 for _ in range(N)]
|
||||||
HSumVariance = [0 for _ in range(N)]
|
HSumVariance = [0 for _ in range(N)]
|
||||||
|
# number of items in the i-th bin
|
||||||
Sum_T=[0 for _ in range(N)]
|
Sum_T=[0 for _ in range(N)]
|
||||||
|
# size of the first item in the i-th bin
|
||||||
Sum_V=[0 for _ in range(N)]
|
Sum_V=[0 for _ in range(N)]
|
||||||
|
|
||||||
for i in range(R):
|
for i in range(R):
|
||||||
sim = simulate_NFBP(N)
|
sim = simulate_NFBP(N)
|
||||||
ISum += sim["i"]
|
ISum += sim["i"]
|
||||||
|
@ -87,14 +93,13 @@ def stats_NFBP_iter(R, N):
|
||||||
V.append(0)
|
V.append(0)
|
||||||
Sum_T=[x+y for x,y in zip(Sum_T,T)]
|
Sum_T=[x+y for x,y in zip(Sum_T,T)]
|
||||||
Sum_V=[x+y for x,y in zip(Sum_V,V)]
|
Sum_V=[x+y for x,y in zip(Sum_V,V)]
|
||||||
#we use round to approximate variations of continuous variable V
|
|
||||||
# Sum_V= round(sim['V'],2))
|
|
||||||
Sum_T=[x/R for x in Sum_T]
|
Sum_T=[x/R for x in Sum_T]
|
||||||
Sum_V=[round(x/R,2) for x in Sum_V]
|
Sum_V=[round(x/R,2) for x in Sum_V]
|
||||||
print(Sum_V)
|
#print(Sum_V)
|
||||||
I = ISum/R
|
I = ISum/R
|
||||||
IVariance = sqrt(IVarianceSum/(R-1) - I**2)
|
IVariance = sqrt(IVarianceSum/(R-1) - I**2)
|
||||||
print("Mean number of bins : {} (variance {})".format(I, IVariance),'\n')
|
print("Mean number of bins : {} (variance {})".format(I, IVariance),'\n')
|
||||||
|
# TODO clarify line below
|
||||||
print(" {} * {} iterations of T".format(R,N),'\n')
|
print(" {} * {} iterations of T".format(R,N),'\n')
|
||||||
|
|
||||||
for n in range(N):
|
for n in range(N):
|
||||||
|
@ -102,12 +107,12 @@ def stats_NFBP_iter(R, N):
|
||||||
HVariance = sqrt(HSumVariance[n]/(R-1) - Hn**2) # Variance
|
HVariance = sqrt(HSumVariance[n]/(R-1) - Hn**2) # Variance
|
||||||
print("Index of bin containing the {}th item (H_{}) : {} (variance {})".format(n, n, Hn, HVariance))
|
print("Index of bin containing the {}th item (H_{}) : {} (variance {})".format(n, n, Hn, HVariance))
|
||||||
HSum=[x/R for x in HSum]
|
HSum=[x/R for x in HSum]
|
||||||
print(HSum)
|
# print(HSum)
|
||||||
#Plotting
|
#Plotting
|
||||||
fig = plt.figure()
|
fig = plt.figure()
|
||||||
#T plot
|
#T plot
|
||||||
x = np.arange(N)
|
x = np.arange(N)
|
||||||
print(x)
|
# print(x)
|
||||||
ax = fig.add_subplot(221)
|
ax = fig.add_subplot(221)
|
||||||
ax.bar(x,Sum_T, width=1,label='Empirical values', edgecolor="blue", linewidth=0.7,color='red')
|
ax.bar(x,Sum_T, width=1,label='Empirical values', edgecolor="blue", linewidth=0.7,color='red')
|
||||||
ax.set(xlim=(0, N), xticks=np.arange(0, N),ylim=(0,3), yticks=np.linspace(0, 3, 5))
|
ax.set(xlim=(0, N), xticks=np.arange(0, N),ylim=(0,3), yticks=np.linspace(0, 3, 5))
|
||||||
|
@ -142,6 +147,7 @@ def stats_NFBP_iter(R, N):
|
||||||
def simulate_NFDBP(N):
|
def simulate_NFDBP(N):
|
||||||
"""
|
"""
|
||||||
Tries to simulate T_i, V_i and H_n for N items of random size.
|
Tries to simulate T_i, V_i and H_n for N items of random size.
|
||||||
|
Next Fit Dual Bin Packing : bins should overflow
|
||||||
"""
|
"""
|
||||||
i = 0 # Nombre de boites
|
i = 0 # Nombre de boites
|
||||||
R = [0] # Remplissage de la i-eme boite
|
R = [0] # Remplissage de la i-eme boite
|
||||||
|
@ -178,8 +184,8 @@ def stats_NFDBP(R, N,t_i):
|
||||||
"""
|
"""
|
||||||
Runs R runs of NFDBP (for N items) and studies distribution, variance, mean...
|
Runs R runs of NFDBP (for N items) and studies distribution, variance, mean...
|
||||||
"""
|
"""
|
||||||
print("Running {} NFDBP simulations with {} items".format(R, N))
|
print("## Running {} NFDBP simulations with {} items".format(R, N))
|
||||||
P=N*R
|
P=N*R # Total number of items
|
||||||
I = []
|
I = []
|
||||||
H = [[] for _ in range(N)] # List of empty lists
|
H = [[] for _ in range(N)] # List of empty lists
|
||||||
T=[]
|
T=[]
|
||||||
|
@ -214,14 +220,13 @@ def stats_NFDBP(R, N,t_i):
|
||||||
T_maths.append(1/(factorial(u-1))-1/factorial(u))
|
T_maths.append(1/(factorial(u-1))-1/factorial(u))
|
||||||
E=0
|
E=0
|
||||||
sigma2=0
|
sigma2=0
|
||||||
print("hep")
|
# print(T_maths)
|
||||||
print(T_maths)
|
|
||||||
for p in range(len(T_maths)):
|
for p in range(len(T_maths)):
|
||||||
E=E+(p+1)*T_maths[p]
|
E=E+(p+1)*T_maths[p]
|
||||||
sigma2=((T_maths[p]-E)**2)/(len(T_maths)-1)
|
sigma2=((T_maths[p]-E)**2)/(len(T_maths)-1)
|
||||||
print("Mathematical values : Empiric mean T_{} : {} Variance {})".format(t_i, E, sqrt(sigma2)))
|
print("Mathematical values : Empiric mean T_{} : {} Variance {})".format(t_i, E, sqrt(sigma2)))
|
||||||
T_maths=[x*100 for x in T_maths]
|
T_maths=[x*100 for x in T_maths]
|
||||||
#Plotting
|
#Plotting
|
||||||
fig = plt.figure()
|
fig = plt.figure()
|
||||||
#T plot
|
#T plot
|
||||||
x = np.arange(N)
|
x = np.arange(N)
|
||||||
|
@ -277,6 +282,6 @@ for j in range(sim["i"] + 1):
|
||||||
sim["T"][j],
|
sim["T"][j],
|
||||||
sim["V"][j]))
|
sim["V"][j]))
|
||||||
|
|
||||||
print()
|
|
||||||
stats_NFBP_iter(10**3, 10)
|
stats_NFBP_iter(10**3, 10)
|
||||||
|
print('\n\n')
|
||||||
stats_NFDBP(10 ** 3, 10,1)
|
stats_NFDBP(10 ** 3, 10,1)
|
||||||
|
|
Loading…
Reference in a new issue