tex: add more NFBP graphs
This commit is contained in:
parent
2dc8ab1b36
commit
6ceddb79f2
4 changed files with 26 additions and 27 deletions
|
@ -368,6 +368,6 @@ def basic_demo():
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
stats_NFBP_iter(10**3, 10)
|
stats_NFBP_iter(10**5, 50)
|
||||||
print("\n\n")
|
print("\n\n")
|
||||||
stats_NFDBP(10**3, 10, 1)
|
stats_NFDBP(10**3, 10, 1)
|
||||||
|
|
|
@ -243,41 +243,40 @@ is the same as for $ T_i $, yielding $ \overline{V_1} = 0.897 $, $ {S_N}^2 =
|
||||||
the two values for $ V_1 $ are high (being bouded between $ 0 $ and $ 1 $).
|
the two values for $ V_1 $ are high (being bouded between $ 0 $ and $ 1 $).
|
||||||
|
|
||||||
|
|
||||||
\paragraph{1 000 000 simulations} In order to ensure better precision, we then
|
\paragraph{100 000 simulations} In order to ensure better precision, we then
|
||||||
ran $ R = 10^6 $ simulations with $ N = 50 $ different items each.
|
ran $ R = 10^5 $ simulations with $ N = 50 $ different items each.
|
||||||
|
|
||||||
With 10 6 simulations, we obtain Xn barre = cf graphe
|
\begin{figure}[h]
|
||||||
Calcul Sn carre
|
\centering
|
||||||
IC observed
|
\includegraphics[width=0.8\textwidth]{graphics/graphic-NFBP-Ti-105-sim}
|
||||||
|
\caption{Histogram of $ T_i $ for $ R = 10^5 $ simulations and $ N = 50 $ items (number of items per bin)}
|
||||||
|
\label{fig:graphic-NFBP-Ti-105-sim}
|
||||||
|
\end{figure}
|
||||||
|
|
||||||
|
On this graph (figure \ref{fig:graphic-NFBP-Ti-2-sim}), we can see each value
|
||||||
|
of $ T_i $. Our calculations have yielded that $ \overline{T_1} = 1.72 $ and $
|
||||||
|
{S_N}^2 = 0.88 $. Our Student coefficient is $ t_{0.95, 2} = 2 $.
|
||||||
|
|
||||||
Same for V.
|
We can now calculate the Confidence Interval for $ T_1 $ for $ R = 10^5 $ simulations :
|
||||||
|
|
||||||
|
\begin{align*}
|
||||||
|
IC_{95\%}(T_1) & = \left[ 1.72 \pm 1.96 \frac{\sqrt{0.88}}{\sqrt{10^5}} \cdot 2 \right] \\
|
||||||
|
& = \left[ 172 \pm 0.012 \right] \\
|
||||||
|
\end{align*}
|
||||||
|
|
||||||
Graphe H
|
We can see that the Confidence Interval is very small, thanks to the large number of iterations.
|
||||||
|
This results in a steady curve in figure \ref{fig:graphic-NFBP-Ti-105-sim}.
|
||||||
|
|
||||||
\paragraph{Distribution of $ T_i $} We first studied how many items were
|
\begin{figure}[h]
|
||||||
present per bin.
|
\centering
|
||||||
|
\includegraphics[width=0.8\textwidth]{graphics/graphic-NFBP-Vi-105-sim}
|
||||||
% TODO sim of T_i
|
\caption{Histogram of $ V_i $ for $ R = 10^5 $ simulations and $ N = 50 $ items (size of the first item in a bin)}
|
||||||
|
\label{fig:graphic-NFBP-Vi-105-sim}
|
||||||
We determined the empirical mean to be
|
\end{figure}
|
||||||
|
|
||||||
\[
|
|
||||||
\overline{T_i} = \frac{1}{20} \sum_{k=1}^{20} T_k = 1.5 \qquad \forall 1 \leq i \leq 20
|
|
||||||
\]
|
|
||||||
|
|
||||||
|
|
||||||
We can show
|
|
||||||
|
|
||||||
\paragraph{Distribution of $ V_i $} We then looked at the size of the first
|
|
||||||
item in each bin.
|
|
||||||
|
|
||||||
\paragraph{Asymptotic behavior of $ H_n $} Finally, we analyzed how many bins
|
\paragraph{Asymptotic behavior of $ H_n $} Finally, we analyzed how many bins
|
||||||
were needed to store $ n $ items.
|
were needed to store $ n $ items. We used the numbers from the $ R = 10^5 $ simulations.
|
||||||
|
|
||||||
% TODO histograms
|
|
||||||
% TODO analysis histograms
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
BIN
latex/graphics/graphic-NFBP-Ti-105-sim.png
Normal file
BIN
latex/graphics/graphic-NFBP-Ti-105-sim.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 12 KiB |
BIN
latex/graphics/graphic-NFBP-Vi-105-sim.png
Normal file
BIN
latex/graphics/graphic-NFBP-Vi-105-sim.png
Normal file
Binary file not shown.
After Width: | Height: | Size: 21 KiB |
Loading…
Reference in a new issue