# Clustering datasets ## Datasets This project contains collection of labeled clustering problems that can be found in the literature. Most of datasets were artificially created. All datasets can be found link:https://github.com/deric/clustering-benchmark/tree/master/src/main/resources/datasets/artificial[data folder]. ### 2d-10c [align="right",options="header"] |=== | data points | clusters | dimension | 2990 | 10 | 2 |=== image::https://github.com/deric/clustering-benchmark/blob/images/fig/artificial/2d-10c.png["2d-10c",400,float="left"] [.float .right] * link:https://github.com/deric/clustering-benchmark/blob/master/src/main/resources/datasets/artificial/2d-10c.arff[ARFF] * link:https://github.com/deric/handl-data-generators[generator] > J. Handl and J. Knowles, “Multiobjective clustering with automatic > determination of the number of clusters,” UMIST, Tech. Rep., 2004. ### atom [align="right",options="header"] |=== | data points | clusters | dimension | 800 | 2 | 3 |=== image::https://github.com/deric/clustering-benchmark/blob/images/fig/artificial/atom.png["atom",400,float="left"] [.float .right] * source: link:https://www.uni-marburg.de/fb12/datenbionik/data?language_sync=1[FCPS] * link:https://github.com/deric/clustering-benchmark/blob/master/src/main/resources/datasets/artificial/atom.arff[ARFF] ### aggregation [align="right",options="header"] |=== | data points | clusters | dimension | 788 | 7 | 2 |=== image::https://github.com/deric/clustering-benchmark/blob/images/fig/artificial/aggregation.png[aggregation,400,float="left"] [.float .right] * link:https://github.com/deric/clustering-benchmark/blob/master/src/main/resources/datasets/artificial/aggregation.arff[ARFF] * link:http://cs.joensuu.fi/sipu/datasets/[original source] > Gionis, A., H. Mannila, and P. Tsaparas, Clustering aggregation. > ACM Transactions on Knowledge Discovery from Data (TKDD), 2007. 1(1): p. 1-30. ### chainlink [align="right",options="header"] |=== | data points | clusters | dimension | 1000 | 2 | 3 |=== image::https://github.com/deric/clustering-benchmark/blob/images/fig/artificial/chainlink.png["chainlink",400,float="left"] [.float .right] * source: link:https://www.uni-marburg.de/fb12/datenbionik/data?language_sync=1[FCPS] * link:https://github.com/deric/clustering-benchmark/blob/master/src/main/resources/datasets/artificial/chainlink.arff[ARFF] > Alfred Ultsch, Clustering with SOM: U*C, > in Proc. Workshop on Self Organizing Feature Maps ,pp 31-37 Paris 2005. ### D31 [align="right",style="asciidoc",options="noborders,wide"] |=== | data points | 3100 | clusters | 31 | dimensions | 2 | image::https://github.com/deric/clustering-benchmark/blob/images/fig/artificial/D31.png["D31",400,float="left"] | * link:https://github.com/deric/clustering-benchmark/blob/master/src/main/resources/datasets/artificial/D31.arff[ARFF] |=== > Veenman, C.J., M.J.T. Reinders, and E. Backer, > A maximum variance cluster algorithm. IEEE Trans. Pattern Analysis and Machine Intelligence 2002. 24(9): p. 1273-1280. ### 3MC [align="right",options="header",style="literal"] |=== | data points | clusters | dimension | 400 | 3 | 2 |=== [.float .right] image::https://github.com/deric/clustering-benchmark/blob/images/fig/artificial/3MC.png["3MC",400,float="left"] ### DS577 [align="right",options="header"] |=== | data points | clusters | dimension | 577 | 3 | 2 |=== image::https://github.com/deric/clustering-benchmark/blob/images/fig/artificial/DS577.png["D31",400,float="left"] [.float .right] * link:https://github.com/deric/clustering-benchmark/blob/master/src/main/resources/datasets/artificial/DS577.arff[ARFF] > M. C. Su, C. H. Chou, and C. C. Hsieh, “Fuzzy C-Means Algorithm with a Point Symmetry Distance,” > International Journal of Fuzzy Systems, vol. 7, no. 4, pp. 175-181, 2005. ### cluto-t4_8k [align="right",options="header"] |=== | data points | clusters | dimension | 8000 | 7 | 2 |=== image::https://github.com/deric/clustering-benchmark/blob/images/fig/artificial/cluto-t4_8k.png["cluto-t4_8k",400,float="left"] [.float .right] * link:https://github.com/deric/clustering-benchmark/blob/master/src/main/resources/datasets/artificial/cluto-t4.8k.arff[ARFF] > G. Karypis, “CLUTO A Clustering Toolkit,” > Dept. of Computer Science, University of Minnesota, Tech. Rep. 02-017, 2002, available at http://www.cs.umn.edu/ ̃cluto. ## Experiments This project contains set of clustering methods benchmarks on various dataset. The project is dependent on [Clueminer project](https://github.com/deric/clueminer). in order to run benchmark compile dependencies into a single JAR file: mvn assembly:assembly # Consensus experiment allows running repeated runs of the same algorithm: ``` ./run consensus --dataset "triangle1" --repeat 10 ``` by default k-means algorithm is used. For available datasets see [resources folder](https://github.com/deric/clustering-benchmark/tree/master/src/main/resources/datasets/artificial).