# YOLOv5 🚀 by Ultralytics, GPL-3.0 license # COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) # Example usage: python train.py --data coco128.yaml # parent # ├── yolov5 # └── datasets # └── coco128 ← downloads here # Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..] path: /scratch/labourde/yolo25000 # dataset root dir train: ./images/ # train images (relative to 'path') val: ./images/ # val images (relative to 'path') test: # test images (optional) # Classes nc: 4 # number of classes names: ['Car', 'Cat', 'Dog', 'Flower'] # class names