167 lines
5.7 KiB
C
167 lines
5.7 KiB
C
#include "stm32f10x.h"
|
|
#include "MyTimer.h"
|
|
#include "DriverGPIO.h"
|
|
#include <stdlib.h>
|
|
|
|
void My_PWM_Channel_Config(TIM_TypeDef* Timer , char channel){
|
|
switch (channel) {
|
|
case 1:
|
|
// Configuration de CC1
|
|
Timer->CCMR1 &= ~TIM_CCMR1_CC1S; // Output
|
|
Timer->CCMR1 |= TIM_CCMR1_OC1M_2 | TIM_CCMR1_OC1M_1; // Mode PWM 1 (0b110)
|
|
Timer->CCMR1 |= TIM_CCMR1_OC1PE; // Preload Enable
|
|
Timer->CCR1 = 0;
|
|
Timer->CCER |= TIM_CCER_CC1E; // Output Enable
|
|
break; // <<-- AJOUTER LE BREAK
|
|
|
|
case 2:
|
|
// Configuration de CC2 (vos registres dans le code initial étaient incohérents)
|
|
Timer->CCMR1 &= ~TIM_CCMR1_CC2S; // Output
|
|
Timer->CCMR1 |= TIM_CCMR1_OC2M_2 | TIM_CCMR1_OC2M_1; // Mode PWM 1 (0b110)
|
|
Timer->CCMR1 |= TIM_CCMR1_OC2PE; // Preload Enable
|
|
Timer->CCR2 = 0;
|
|
Timer->CCER |= TIM_CCER_CC2E; // Output Enable
|
|
break;}
|
|
|
|
Timer->CR1 |= TIM_CR1_ARPE; // Auto-Reload Preload
|
|
Timer->BDTR |= TIM_BDTR_MOE; // Main Output Enable (pour les timers avancés TIM1/8)
|
|
Timer->EGR |= TIM_EGR_UG;
|
|
Timer->CR1 |= TIM_CR1_CEN;
|
|
|
|
};
|
|
|
|
|
|
|
|
void MyTimer_PWM(TIM_TypeDef * Timer , int Channel){
|
|
int pwrmd;
|
|
#if POWERMODE //Powermode 1
|
|
pwrmd = 0b110;
|
|
#else
|
|
pwrmd = 0b110; //Powermode 2
|
|
#endif
|
|
|
|
if (Channel == 1){
|
|
Timer->CCMR1 &= ~(0b111<<4); //On clear les trois bits qui sont de pwm
|
|
Timer->CCMR1 |= (pwrmd<<4); //On affecte le powermode au bits de lecture pour le µ-controlleur
|
|
Timer->CCMR1 |= TIM_CCMR1_OC1PE; //Update preload, il n'affecte pas le valeur avant que la prochaine cycle
|
|
Timer->CCER = TIM_CCER_CC1E; //Enable le pin voulu basculer
|
|
}
|
|
else if (Channel == 2){
|
|
Timer->CCMR1 &= ~(0b111<<12); //Le TIMx_CCMR1 configure deux channels, de bit [6:4] CH1, [14:12] CH2 (OC2M = Output Channel 2 )
|
|
Timer->CCMR1 |= (pwrmd<<12);
|
|
Timer->CCMR1 |= TIM_CCMR1_OC2PE;
|
|
Timer->CCER |= TIM_CCER_CC2E;
|
|
}
|
|
else if (Channel == 3){
|
|
Timer->CCMR1 &= ~(0b111<<4);
|
|
Timer->CCMR2 |= (pwrmd<<4);
|
|
Timer->CCMR2 |= TIM_CCMR2_OC3PE;
|
|
Timer->CCER |= TIM_CCER_CC3E;
|
|
}
|
|
else if (Channel == 4){
|
|
Timer->CCMR1 &= ~(0b111<<12);
|
|
Timer->CCMR2 |= (pwrmd<<12);
|
|
Timer->CCMR2 |= TIM_CCMR2_OC4PE;
|
|
Timer->CCER |= TIM_CCER_CC4E;
|
|
}
|
|
|
|
//En dessous d'ici, on a l'aide du plus gentil chat que je connais
|
|
// Enable auto-reload preload -- //Ensures that your initial configuration — PWM mode, duty cycle, period — actually takes effect before the timer starts counting.
|
|
Timer->CR1 |= TIM_CR1_ARPE;
|
|
// Force update event to load ARR and CCR values immediately
|
|
Timer->EGR |= TIM_EGR_UG;
|
|
// Start the timer
|
|
Timer->CR1 |= TIM_CR1_CEN;
|
|
|
|
switch (Channel) {
|
|
case 1:
|
|
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<0*4); GPIOA->CRH |= (0xA<<0*4); TIM1->BDTR |= 1<<15; }
|
|
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<0*4); GPIOA->CRL |= (0xA<<0*4);}
|
|
if (Timer == TIM3){GPIOA->CRL &= ~(0xF<<6*4); GPIOA->CRL |= (0xA<<6*4);}
|
|
if (Timer == TIM4){GPIOB->CRL &= ~(0xF<<5*4); GPIOB->CRL |= (0xA<<5*4);}
|
|
break;
|
|
case 2:
|
|
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<1*4); GPIOA->CRL |= (0xA<<1*4); TIM1->BDTR |= 1<<15;}
|
|
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<1*4); GPIOA->CRL |= (0xA<<1*4);}
|
|
if (Timer == TIM3){GPIOA->CRL &= ~(0xF<<7*4); GPIOA->CRL |= (0xA<<7*4);}
|
|
if (Timer == TIM4){GPIOB->CRL &= ~(0xF<<7*4); GPIOB->CRL |= (0xA<<7*4);}
|
|
break;
|
|
case 3:
|
|
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<2*4); GPIOA->CRH |= (0xA<<2*4); TIM1->BDTR |= 1<<15;}
|
|
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<2*4); GPIOA->CRL |= (0xA<<2*4);}
|
|
if (Timer == TIM3){GPIOB->CRL &= ~(0xF<<0*4); GPIOB->CRL |= (0xA<<0*4);}
|
|
if (Timer == TIM4){GPIOB->CRH &= ~(0xF<<0*4); GPIOB->CRH |= (0xA<<0*4);}
|
|
break;
|
|
case 4:
|
|
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<3*4); GPIOA->CRH |= (0xA<<3*4); TIM1->BDTR |= 1<<15;}
|
|
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<3*4); GPIOA->CRL |= (0xA<<3*4);}
|
|
if (Timer == TIM3){GPIOB->CRL &= ~(0xF<<1*4); GPIOB->CRL |= (0xA<<1*4);}
|
|
if (Timer == TIM4){GPIOB->CRH &= ~(0xF<<1*4); GPIOB->CRH |= (0xA<<1*4);}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
//Une fonction qui met le bon PWM volue
|
|
int Set_DutyCycle_PWM(TIM_TypeDef *Timer, int Channel, int DutyC){
|
|
int CCR_VAL = (Timer->ARR + 1) * DutyC / 100;
|
|
switch (Channel){
|
|
case 1:
|
|
Timer->CCR1 = CCR_VAL;
|
|
break;
|
|
case 2:
|
|
Timer->CCR2 = CCR_VAL;
|
|
break;
|
|
case 3:
|
|
|
|
Timer->CCR3 = CCR_VAL;
|
|
break;
|
|
case 4:
|
|
Timer->CCR4 = CCR_VAL;
|
|
break;
|
|
default:
|
|
return -1; // channel invalide
|
|
}
|
|
Timer->EGR |= TIM_EGR_UG; // update event
|
|
return 0;
|
|
}
|
|
|
|
|
|
void initPlato(TIM_TypeDef * Timer, int Channel){ // Config du moteur servo
|
|
|
|
MyGPIO_Init(GPIOB, 5, AltOut_Ppull); //config pin de direction 0 ou 1
|
|
if (Timer == TIM3) {
|
|
EnableTimer(TIM3);
|
|
MyTimer_Base_Init(TIM3, 159, 17); // Pour obtenir fréq de 20kHZ
|
|
if (Channel == 3){
|
|
MyGPIO_Init(GPIOB, 0, AltOut_Ppull); // Outut push pull alternate, config pin de consigne entre -100 et 100
|
|
MyTimer_PWM(TIM3, 3); //TIM3 CH3
|
|
}
|
|
else{
|
|
//printf("Ce pilote n'existe pas");
|
|
}
|
|
}
|
|
else{
|
|
//printf("Ce pilote n'existe pas");
|
|
}
|
|
}
|
|
|
|
|
|
void Update_Motor_PWM(int Consigne, TIM_TypeDef * Timer, int Channel) {
|
|
|
|
int duty_cycle;
|
|
|
|
if (Consigne>=0){
|
|
MYGPIO_PinOn(GPIOB, 5);
|
|
duty_cycle = Consigne;
|
|
};
|
|
|
|
if (Consigne<0){
|
|
MYGPIO_PinOff(GPIOB,5);
|
|
duty_cycle = -Consigne;
|
|
};
|
|
|
|
Set_DutyCycle_PWM(Timer, Channel, duty_cycle);
|
|
|
|
}
|
|
|