#include "stm32f10x.h" #include "MyTimer.h" #include "Nucleo.h" #include "Timer.h" #include "DriverGPIO.h" #include "Girouette.h" #include "PWM.h" #include // Pour abs() #define POSITIONS 4*360 void configEncoder(TIM_TypeDef * Timer){ Timer -> CCMR1 |= TIM_CCMR1_CC1S; // TI1FP1 mapped on TI1 Timer -> CCMR1 |= TIM_CCMR1_CC2S; // TI1FP2 mapped on TI2 Timer -> CCER &= ~(TIM_CCER_CC1P | TIM_CCER_CC1NP); // TI1FP1 output non-inverted Timer -> CCMR1 &= ~(TIM_CCMR1_IC1F); // Input capture 1 filter, no filter Timer -> CCER &= ~(TIM_CCER_CC2P | TIM_CCER_CC2NP); // TI1FP2 output non-inverted Timer -> CCMR2 &= ~(TIM_CCMR1_IC2F); // Input capture 2 filter, no filter Timer -> SMCR &= ~TIM_SMCR_SMS; // Reset SMS-bits Timer -> SMCR |= TIM_SMCR_SMS_0 | TIM_SMCR_SMS_1;// SMS = "011" Timer -> CR1 |= TIM_CR1_CEN; // Enable counter Timer -> ARR = 0xFD20; // Setting ARR as 1440*45 } void configChannel(){ MyGPIO_Init(GPIOA,0,In_Floating ); // GPIOA pin 0 in mode floating TIM2_CH1 MyGPIO_Init(GPIOA,1,In_Floating ); // GPIOA pin 1 in mode floating TIM2_CH2 MyGPIO_Init(GPIOA,2,In_Floating); MyGPIO_Init(GPIOA,8,In_PullDown ); // GPIOA pin 7 in mode floating Index } int returnAngle (TIM_TypeDef * Timer){ return((Timer -> CNT % POSITIONS)/POSITIONS * 360); } // Reste à coder une fonction de reset des degrés et une fonction qui retourne correctement l'angle int vent2voile(int angle){ // Conversion angle vent à angle voile if(abs(angle) < 90){ return 0; } else{ return(abs(angle)-90); } } void Servo_Moteur(int angle, TIM_TypeDef * Timer, int Channel){ // Controle du moteur int dutyCycle = (5* angle + 5*90)/90; MyTimer_Set_DutyCycle(Timer, Channel, dutyCycle); }