Suppression des ficher en double
This commit is contained in:
parent
d8baef8443
commit
939647404e
4 changed files with 0 additions and 323 deletions
140
Accelerometre.c
140
Accelerometre.c
|
|
@ -1,140 +0,0 @@
|
|||
#include <stm32f10x.h>
|
||||
#include <Horloge.h>
|
||||
#include <MYGPIO.h>
|
||||
#include <stdlib.h>
|
||||
#include <MySPI.h>
|
||||
#include <stdint.h>
|
||||
|
||||
//Pin GPIOA_9 et GPIOA_10 sont pris par USART
|
||||
|
||||
/*
|
||||
I2C SDA IN/OUT
|
||||
I2C SCL OUT
|
||||
*/
|
||||
|
||||
//il faut recuperer le data qui sort
|
||||
|
||||
/*
|
||||
SPI1_NSS PA4 - Utilisé
|
||||
NSS = 0 -> slave active
|
||||
NSS = 1 -> slave inactive
|
||||
|
||||
SPI1_SCK PA5
|
||||
SPI1_MISO PA6
|
||||
SPI1_MOSI PA7
|
||||
|
||||
TIM3 CH3 PB0
|
||||
|
||||
0x32 50 DATAX0 R 00000000 X-Axis Data 0
|
||||
0x33 51 DATAX1 R 00000000 X-Axis Data 1
|
||||
0x34 52 DATAY0 R 00000000 Y-Axis Data 0
|
||||
0x35 53 DATAY1 R 00000000 Y-Axis Data 1
|
||||
0x36 54 DATAZ0 R 00000000 Z-Axis Data 0
|
||||
0x37 55 DATAZ1 R 00000000 Z-Axis Data 1
|
||||
|
||||
*/
|
||||
|
||||
|
||||
void initAccelo(void)
|
||||
{
|
||||
MySPI_Init(SPI1);
|
||||
// Power_CTL register = 0x2D ? write 0x08 (MEASURE = 1)
|
||||
MySPI_Clear_NSS();
|
||||
MySPI_Send(0x2D & 0x3F); // write address (no read bit!)
|
||||
MySPI_Send(0x08); // set MEASURE bit
|
||||
MySPI_Set_NSS();
|
||||
|
||||
for (volatile int i = 0; i < 10000; i++); // small delay
|
||||
}
|
||||
|
||||
// send bits, les bits inclus en char envoyés: RW MB A5 A4 A3 A2 A1 A0
|
||||
//RW: R = 1 et W = 0
|
||||
//MB à 1 veut measurement et MB à 0 Standby
|
||||
uint16_t * RecupAccelo(void){ //Renvoie 48 bits en forme des chars
|
||||
static uint16_t Messias[3];
|
||||
|
||||
//On lit X0
|
||||
MySPI_Clear_NSS();//Mettre la broche PA4 à 0
|
||||
MySPI_Send(0x80|0x00|0x32); //Lecture de X0 et MB à 1 pour garder les valeurs 0b11110010: (R/W|MB|Adress)
|
||||
//Faktisk dritsmart det katten gjør, setter MB=1 som sier multiple byte read, så leser den alle 6 bytes samtidig istedenfor en og en
|
||||
uint16_t X0 = MySPI_Read();
|
||||
MySPI_Set_NSS(); //Mettre la broche PA4 à 1
|
||||
|
||||
//On lit X1
|
||||
MySPI_Clear_NSS();//Mettre la broche PA4 à 0
|
||||
MySPI_Send(0x80|0x00|0x33); //Lecture de X1
|
||||
Messias[0] = X0 | (MySPI_Read() << 8);
|
||||
MySPI_Set_NSS(); //Mettre la broche PA4 à 1
|
||||
|
||||
//On lit Y0
|
||||
MySPI_Clear_NSS();//Mettre la broche PA4 à 0
|
||||
MySPI_Send(0x80|0x00|0x34); //Lecture de Y0
|
||||
uint16_t Y0 = MySPI_Read();
|
||||
MySPI_Set_NSS(); //Mettre la broche PA4 à 1
|
||||
|
||||
//On lit Y1
|
||||
MySPI_Clear_NSS();//Mettre la broche PA4 à 0
|
||||
MySPI_Send(0x80|0x00|0x35); //Lecture de Y1
|
||||
Messias[1] = Y0 | (MySPI_Read() << 8);
|
||||
MySPI_Set_NSS(); //Mettre la broche PA4 à 1
|
||||
|
||||
//On lit Z0
|
||||
MySPI_Clear_NSS();//Mettre la broche PA4 à 0
|
||||
MySPI_Send(0x80|0x00|0x36); //Lecture de Z0
|
||||
uint16_t Z0 = MySPI_Read();
|
||||
MySPI_Set_NSS(); //Mettre la broche PA4 à 1
|
||||
|
||||
//On lit Z1
|
||||
MySPI_Clear_NSS();//Mettre la broche PA4 à 0
|
||||
MySPI_Send(0x80|0x00|0x37); //Lecture de Z1
|
||||
Messias[2] = Z0 | (MySPI_Read() << 8);
|
||||
MySPI_Set_NSS(); //Mettre la broche PA4 à 1
|
||||
|
||||
return Messias;
|
||||
}
|
||||
|
||||
|
||||
uint16_t * KattRecupAccelo(void) //Beaucoup plus smart
|
||||
{
|
||||
static uint16_t Messias[3];
|
||||
uint8_t buf[6];
|
||||
// Multi-byte read from 0x32 (X0..Z1)
|
||||
MySPI_Clear_NSS();
|
||||
// Send READ + MB + address
|
||||
MySPI_Send(0x80 | 0x40 | 0x32); // 0xF2
|
||||
// Read 6 sequential registers
|
||||
for (int i = 0; i < 6; i++) {
|
||||
buf[i] = (uint8_t)MySPI_Read();
|
||||
}
|
||||
MySPI_Set_NSS();
|
||||
// Convert little-endian to 16-bit signed values
|
||||
Messias[0] = (uint16_t)(buf[1] << 8 | buf[0]); // X
|
||||
Messias[1] = (uint16_t)(buf[3] << 8 | buf[2]); // Y
|
||||
Messias[2] = (uint16_t)(buf[5] << 8 | buf[4]); // Z
|
||||
|
||||
return Messias;
|
||||
}
|
||||
|
||||
void initLacheur(void){
|
||||
GPIOB->CRH &= ~(0xF << (0 * 4));
|
||||
GPIOB->CRH |= (0xA << (0 * 4)); //On met GPIOB.8 en mode output 2Mhz, alternate pp
|
||||
Timer_Init(TIM4, 20000 - 1, 71); //Claire m'a aidé
|
||||
}
|
||||
|
||||
//Recuperer le DATA en X, Z, Y
|
||||
void LacheVoile(uint16_t * DATA){
|
||||
//uint16_t X = DATA[0]; //Z le longe du mât (masten)
|
||||
//uint16_t Z = DATA[2];// //X le long du sense de voilier
|
||||
uint16_t Y = DATA[1]; ////Y vers les bords (Tribord/Babord)
|
||||
if (Y>=0x007B){// exatement à 40 degrés, on lache le 40%. 0xFF*(40deg/90deg)
|
||||
//Le PWM du moteur est gère par PB7
|
||||
MyTimer_PWM(TIM4, 3); //TIM4 CH3 pour PB8
|
||||
Set_DutyCycle_PWM(TIM4, 3, 2); //On met Duty cycle à 2% et il reste autour de 90 deg
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
|
@ -1,8 +0,0 @@
|
|||
#include <stm32f10x.h>
|
||||
#include <stdint.h>
|
||||
|
||||
void initAccelo(void);
|
||||
uint16_t * RecupAccelo(void);
|
||||
void LacheVoile(uint16_t * DATA);
|
||||
void initLacheur(void);
|
||||
uint16_t * KattRecupAccelo(void);
|
||||
159
Horloge.c
159
Horloge.c
|
|
@ -1,159 +0,0 @@
|
|||
#include <stm32f10x.h>
|
||||
#include <stdio.h>
|
||||
#include <Horloge.h>
|
||||
|
||||
|
||||
//Il faut trouver le signal
|
||||
//On est à Timer 2
|
||||
|
||||
static void (*TIM2_Appel)(void) = 0;
|
||||
|
||||
void Timer_Init(TIM_TypeDef *Timer, unsigned short Autoreload, unsigned short Prescaler){
|
||||
if (Timer == TIM1) {
|
||||
RCC->APB2ENR |= RCC_APB2ENR_TIM1EN; //L'horloge est enabléd
|
||||
} else if (Timer == TIM2) {
|
||||
TIM2->CR1 |= TIM_CR1_CEN; //On enable l'horloge interne
|
||||
RCC->APB1ENR |= RCC_APB1ENR_TIM2EN;
|
||||
} else if (Timer == TIM3) {
|
||||
RCC->APB1ENR |= RCC_APB1ENR_TIM3EN;
|
||||
} else if (Timer == TIM4) {
|
||||
RCC->APB1ENR |= RCC_APB1ENR_TIM4EN;
|
||||
}
|
||||
Timer->ARR |= Autoreload;
|
||||
Timer->PSC |= Prescaler;
|
||||
}
|
||||
|
||||
//La fonction TIM2_IRQHandler s'utilise dans le processeur, on l'a juste redifint, tel qu'à chaque overflow on met un bit 1 dans GPIOA_ODR
|
||||
void TIM2_IRQHandler(void) { //On redefinit le IRQHandler qui est déjà ecrit dans le code source
|
||||
if (TIM2->SR & TIM_SR_UIF) { //On met le bit de overflow à un dès qu'on a overflow
|
||||
TIM2->SR &= ~TIM_SR_UIF; //Remise à zero
|
||||
|
||||
if (TIM2_Appel){TIM2_Appel();}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void MyTimer_ActiveIT(TIM_TypeDef * Timer, char Prio, void(*Interrupt_fonc)(void)){ //On veut créer une fonction qui envoie un signal au cas où il y a debordement, avec une prioritaire, 0 plus importante 15 moins importante
|
||||
if (Timer == TIM2){
|
||||
|
||||
TIM2_Appel = Interrupt_fonc;
|
||||
|
||||
NVIC_EnableIRQ(TIM2_IRQn);
|
||||
NVIC_SetPriority(TIM2_IRQn, Prio);
|
||||
TIM2->DIER |= TIM_DIER_UIE; //Le registre DIER(Interrupt Enable Register) est mis au bit Update Interrupt, qui se commute lors d'un overflow
|
||||
TIM2->CR1 |= TIM_CR1_CEN; //Clock Enable
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
//Fonction qui permet de clignoter le DEL à un pulse volue (Sinusoïdale)
|
||||
//Si le sinus est haut(haute tension) le Duty Cicle est proche de 100%,
|
||||
//si le sinus est bas (vers la tension la plus basse) le Duty Cycle est vers 0%
|
||||
//On s'applique sur un plage de [0V; 3.3V]
|
||||
|
||||
|
||||
void MyTimer_PWM(TIM_TypeDef * Timer , int Channel){
|
||||
int pwrmd;
|
||||
#if POWERMODE //Powermode 1
|
||||
pwrmd = 0b110;
|
||||
#else
|
||||
pwrmd = 0b111; //Powermode 2
|
||||
#endif
|
||||
|
||||
if (Channel == 1){
|
||||
Timer->CCMR1 &= ~(0b111<<4); //On clear les trois bits qui sont de pwm
|
||||
Timer->CCMR1 |= (pwrmd<<4); //On affecte le powermode au bits de lecture pour le µ-controlleur
|
||||
Timer->CCMR1 |= TIM_CCMR1_OC1PE; //Update preload, il n'affecte pas le valeur avant que la prochaine cycle
|
||||
Timer->CCER = TIM_CCER_CC1E; //Enable le pin voulu basculer
|
||||
}
|
||||
else if (Channel == 2){
|
||||
Timer->CCMR1 &= ~(0b111<<12); //Le TIMx_CCMR1 configure deux channels, de bit [6:4] CH1, [14:12] CH2 (OC2M = Output Channel 2 )
|
||||
Timer->CCMR1 |= (pwrmd<<12);
|
||||
Timer->CCMR1 |= TIM_CCMR1_OC2PE;
|
||||
Timer->CCER |= TIM_CCER_CC2E;
|
||||
}
|
||||
else if (Channel == 3){
|
||||
Timer->CCMR1 &= ~(0b111<<4);
|
||||
Timer->CCMR2 |= (pwrmd<<4);
|
||||
Timer->CCMR2 |= TIM_CCMR2_OC3PE;
|
||||
Timer->CCER |= TIM_CCER_CC3E;
|
||||
}
|
||||
else if (Channel == 4){
|
||||
Timer->CCMR1 &= ~(0b111<<12);
|
||||
Timer->CCMR2 |= (pwrmd<<12);
|
||||
Timer->CCMR2 |= TIM_CCMR2_OC4PE;
|
||||
Timer->CCER |= TIM_CCER_CC4E;
|
||||
}
|
||||
|
||||
//En dessous d'ici, on a l'aide du plus gentil chat que je connais
|
||||
// Enable auto-reload preload -- //Ensures that your initial configuration — PWM mode, duty cycle, period — actually takes effect before the timer starts counting.
|
||||
Timer->CR1 |= TIM_CR1_ARPE;
|
||||
// Force update event to load ARR and CCR values immediately
|
||||
Timer->EGR |= TIM_EGR_UG;
|
||||
// Start the timer
|
||||
Timer->CR1 |= TIM_CR1_CEN;
|
||||
|
||||
switch (Channel) {
|
||||
case 1:
|
||||
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<0*4); GPIOA->CRH |= (0xA<<0*4); TIM1->BDTR |= 1<<15; }
|
||||
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<0*4); GPIOA->CRL |= (0xA<<0*4);}
|
||||
if (Timer == TIM3){GPIOA->CRL &= ~(0xF<<6*4); GPIOA->CRL |= (0xA<<6*4);}
|
||||
if (Timer == TIM4){GPIOB->CRL &= ~(0xF<<5*4); GPIOB->CRL |= (0xA<<5*4);}
|
||||
break;
|
||||
case 2:
|
||||
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<1*4); GPIOA->CRL |= (0xA<<1*4); TIM1->BDTR |= 1<<15;}
|
||||
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<1*4); GPIOA->CRL |= (0xA<<1*4);}
|
||||
if (Timer == TIM3){GPIOA->CRL &= ~(0xF<<7*4); GPIOA->CRL |= (0xA<<7*4);}
|
||||
if (Timer == TIM4){GPIOB->CRL &= ~(0xF<<7*4); GPIOB->CRL |= (0xA<<7*4);}
|
||||
break;
|
||||
case 3:
|
||||
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<2*4); GPIOA->CRH |= (0xA<<2*4); TIM1->BDTR |= 1<<15;}
|
||||
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<2*4); GPIOA->CRL |= (0xA<<2*4);}
|
||||
if (Timer == TIM3){GPIOB->CRL &= ~(0xF<<0*4); GPIOB->CRL |= (0xA<<0*4);}
|
||||
if (Timer == TIM4){GPIOB->CRH &= ~(0xF<<0*4); GPIOB->CRH |= (0xA<<0*4);}
|
||||
break;
|
||||
case 4:
|
||||
if (Timer == TIM1){GPIOA->CRH &= ~(0xF<<3*4); GPIOA->CRH |= (0xA<<3*4); TIM1->BDTR |= 1<<15;}
|
||||
if (Timer == TIM2){GPIOA->CRL &= ~(0xF<<3*4); GPIOA->CRL |= (0xA<<3*4);}
|
||||
if (Timer == TIM3){GPIOB->CRL &= ~(0xF<<1*4); GPIOB->CRL |= (0xA<<1*4);}
|
||||
if (Timer == TIM4){GPIOB->CRH &= ~(0xF<<1*4); GPIOB->CRH |= (0xA<<1*4);}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
//Une fonction qui met le bon PWM volue
|
||||
int Set_DutyCycle_PWM(TIM_TypeDef *Timer, int Channel, int DutyC){
|
||||
int CCR_VAL = (ARR_VAL + 1) * DutyC / 100; //ARR_VAL déjà definie
|
||||
switch (Channel){
|
||||
case 1: Timer->CCR1 = CCR_VAL;
|
||||
case 2: Timer->CCR2 = CCR_VAL;
|
||||
case 3: Timer->CCR3 = CCR_VAL;
|
||||
case 4: Timer->CCR4 = CCR_VAL;
|
||||
default: break;
|
||||
}
|
||||
return 0;
|
||||
Timer->EGR |= TIM_EGR_UG;
|
||||
}
|
||||
//Putaing con, ça marche pas
|
||||
|
||||
|
||||
/*
|
||||
Pulse width modulation mode allows you to generate a signal with a frequency determined
|
||||
by the value of the TIMx_ARR register and a duty cycle determined by the value of the
|
||||
TIMx_CCRx register.
|
||||
|
||||
The PWM mode can be selected independently on each channel (one PWM per OCx
|
||||
output) by writing 110 (PWM mode 1) or ‘111 (PWM mode 2) in the OCxM bits in the
|
||||
TIMx_CCMRx register. You must enable the corresponding preload register by setting the
|
||||
OCxPE bit in the TIMx_CCMRx register, and eventually the auto-reload preload register by
|
||||
setting the ARPE bit in the TIMx_CR1 register.
|
||||
*/
|
||||
//Il faut créer une autre fonction qui lui met le bon duty cycle
|
||||
//Timer->CCR1 = Duty_cycle*0.01*3.3; // On divise par cent et multiplue par 3.3V, plage de ADC
|
||||
|
||||
//Pareil pour la frequence, faut une fonction externe qui lui fait ça
|
||||
|
||||
|
||||
//Pendant les vacances terminer l'ADC et l'USART (Activités sur Moodle)
|
||||
//Hell naw, that did not happen cuh
|
||||
|
||||
16
Horloge.h
16
Horloge.h
|
|
@ -1,16 +0,0 @@
|
|||
#include <stm32f10x.h>
|
||||
#define PSC_VAL 624
|
||||
#define ARR_VAL 0xE0FF
|
||||
|
||||
//DUTY CYCLE
|
||||
#define DUTYC 70 //Chiffre entre 0 et 100, où 100 est 100% duty cycle
|
||||
#define POWERMODE 1 // 1 vaut powermode 1, 0 vaut powermode 2 (Powermode pour le config de dutycycle)
|
||||
//Powermode 1 reste sur la bonne polarité: cad. si DUTY_CYCLE vaut 60 alors le signal reste HIGH pour 60% du periode, inverse pour pwmd2
|
||||
//Timer
|
||||
void Timer_Init(TIM_TypeDef *Timer, unsigned short Autoreload, unsigned short Prescaler);
|
||||
void MyTimer_ActiveIT(TIM_TypeDef * Timer, char Prio, void(*Interrupt_fonc)(void));
|
||||
void TIM2_IRQHandler(void);
|
||||
|
||||
//PWM
|
||||
void MyTimer_PWM(TIM_TypeDef * Timer , int Channel);
|
||||
int Set_DutyCycle_PWM(TIM_TypeDef *Timer, int Channel, int DutyC);
|
||||
Loading…
Reference in a new issue