
R exerices Igraph

Gilles Tredan

Abstract

Graph Creation and sample statistics

- create an empty undirected graph using the command graph.empty
- create the sample graph given Figure 1 using the graph.formula command.
- use the plot function to represent this graph
- igraph also provides different ways to generate random graphs. Generate the following graphs
 - ga=barabasi.game(500,power=2.5,directed=F,m=5)
 - gb=erdos.renyi.game(496,0.016,directed=F)
 - gc=watts.strogatz.game(1,500,4,.1)
- inspect their degree distribution degree (g) and plot the 3 degree distributions together.
- Use lapply to collect information about these graphs: diameter, average.path.length, and clustering coefficient (transitivity).
- Plot the ga's degree distribution on a log-log plot. Use power.law.fit.
- How does the powerlaw coefficient evolves as you increase the graph size? Create a function that returns the powerlaw exponent as a function of the Barabasi-Albert graph size. Plot its evolution for graphs of size [500, 10000]. How does the KS score evolves?

- Use replicate to construct a more robust observation: replicate each estimation of the alpha parameter 10 times and represent the distribution obtained.
- Use ddply to speed up the evaluation of these last functions.

Graph attributes and manipulation

- gml (Graph Modelling Language) is a pretty standard format to exchange graphs.
- Use read.graph to read lesmis.gml, a graph representing the co-appearance network of characters in Hugo's book "Les misrables".
- igraph provides a bunch of different layouts: layout.auto layout.bipartite, layout.circle layout.drl, layout.fruchterman.reingold layout.fruchterman.reingold.grid, layout.graphop layout.grid, layout.grid.3d layout.kamada.kawai, layout.lgl, layout.mds, layout.merge layout.norm, layout.random layout.reingold.tilford, layout.show layout.sphere, layout.spring, layout.star, layout.sugiyama, layout.svd. Try fruchterman.reingold and circle layouts using layout= option in plot. Note: the documentation of the called plot function for igraph objects is ?plot.igraph
- use edge.betweenness.community to find the communities in Les misrables' graph.
- Use the class function to identify the class of the result provided by edge.betweenness.community. Maybe there is a plot function that can represent such object? Plot the communities of Les misrables.
- Bonus: use microbenchmark to estimate the asymptotic complexity of edge.betweenness.community by running it on networks of increasing size. Which parameters impact the runtime of this method (besides graph size)?

Visualizing Graphs as Sparse Matrixes

- Graphs can be represented by their adjacency matrix. The adjacency matrix A of a n-vertices graph G is a $n \times n$ matrix where A[i,j] = 1 if $(i,j) \in E(G)$ (i.e. there exists an edge between nodes i and j), 0 else.
- Create a function that represents a graph's adjacency matrix using graph.adjacency, as.matrix, melt, and geom_raster. Use it to represent ga,gb and gc