R exerices Plots and more complex procedures

Gilles Tredan

Abstract

1 Plots and Given Names

Exploring the Pink city

- read the table prenoms.csv
- inspect it
- Plot:
 - The number of births by year
 - The number of male/female births by year
 - Is your name in the dataset?
 - Represent the 10 most given names
 - Select for each year the top 5 given names by sex and represent their evolution along years.
 - Plot the average number of letters by year
 - Plot the average number of vowels/consonants by year
 - How the number of composed names (like Jean-Baptiste or Lou-Ann
 - Define a "hype" criteria and find the hypest names

Exploring the Gray city

- ullet read the table prenomsParis.csv
- repeat what you've done with Toulouse, rewriting as little as possible

A tale of two cities

- Combine observations made on the two cities.
- Normalise by the number of births.
- What are the most unshared names?

A tale of many cities

- Read the table prenomsRennesStrassNantesToul.csv
- Inspect it. On the opendata website the description is the following:

This file contains given names to childrens born in Rennes, Strasbourg, Nantes and Toulouse urban areas from 2002 to 2012

Is this really what you observe?

• The cosine similarity function can nevertheless help us. Given two vectors A and B, it is defined as

$$C = \frac{\sum_{i=1}^{n} A_{i}B_{i}}{\sqrt{\sum_{i=1}^{n} A_{i}^{2} \cdot \sqrt{\sum_{i=1}^{n} B_{i}^{2}}}}.$$

Implement this function in R and compute the pairwise distance between all the cities.

2 Point clouds

- Read the "datacloud.csv" file. It contains the observation of the datapoints generated by 3 independent 2d random laws.
- Use kmeans to discover the means of each of these laws
- Plot the detected clusters

3 Clouds

Air quality is monitored in Toulouse by the *Oramip* organisation. The considered data is collected at the following stations: JACQUI, MAZADE, BRTLOT, PERIPH, TRAFIC_TLSE, EISEN, CHAPIT. These stations monitor the following concentrations: NO_2 , O_3 , PM_{10} , PM_{25} . Note that some of these pollutants are not monitored by all stations. You can download the data at the following address: http://homepages.laas.fr/gtredan/tmds/dataset.tgz. The archive contains all the data.

Each dataset is named as follows: AEROSOL_NUMEROSERIE_STATION.csv. Inside, a first column defines a useless line number. The second column represents the measure date, expressed as the number of seconds ellapsed since 1970 (aka unix timestamp). Last column contains the measured concentration concentration (in $g.m^3$).

- 1. Import the data
- 2. Provide a macroscopic overview of the data (number of values, average, sampling rate).
- 3. Which station is the biggest data producer?
- 4. Present the profile of MAZADE, that is, the evolution of concentrations over time.
- 5. Are PM_{10} and PM_{25} correlated on MAZADE? And on the other stations?
- 6. When a station does not produce data, is it only for a single sensor, or for all ?
- 7. If I leave near PERIPH or near TRAFIC-TLSE, am I more exposed to NO_2 compared to somewhere else?

Bonus

- What is the most polluted day ? (utiliser as.POSIXct(DLdata\$t, origin = "1970 01 01") pour convertir en timestamp)
- Assuming a direct correlation between pollution and road use, identify the rush hours.
- How long does a sensor outage lasts (no acquired data)
- Assuming close stations provide close results, estimate the distances between stations.