Added comments
This commit is contained in:
parent
c58aa1ec51
commit
7daeec2ef4
3 changed files with 206 additions and 7 deletions
77
ann.ipynb
77
ann.ipynb
|
@ -1,5 +1,13 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "4d162f18",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Import du dataset"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
|
@ -23,6 +31,14 @@
|
|||
"from sklearn.neural_network import MLPClassifier"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "95e0ce45",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Echantillonnage du dataset"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 4,
|
||||
|
@ -34,10 +50,15 @@
|
|||
"data = mnist.data.values[echantillon]\n",
|
||||
"target = mnist.target[echantillon]\n",
|
||||
"trainSize = 17500/25000\n",
|
||||
"xtrain, xtest, ytrain, ytest = train_test_split(data, target, train_size=trainSize)\n",
|
||||
"#trainSize = 49000/len(data)\n",
|
||||
"#xtrain, xtest, ytrain, ytest = train_test_split(data, target, \n",
|
||||
"#train_size=trainSize)"
|
||||
"xtrain, xtest, ytrain, ytest = train_test_split(data, target, train_size=trainSize)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "f35a2a10",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Premier entraînement et scores"
|
||||
]
|
||||
},
|
||||
{
|
||||
|
@ -110,6 +131,14 @@
|
|||
"precision_score(target.values, clf.predict(data), average='micro')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d5d7d4c1",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Nombre de couches cachées optimal"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 14,
|
||||
|
@ -149,6 +178,14 @@
|
|||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e4b13f21",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Nombre de couches cachées et de neurones par couche optimaux"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 46,
|
||||
|
@ -231,6 +268,14 @@
|
|||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "11adbe03",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Algorithme d'optimisation optimal"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 47,
|
||||
|
@ -370,6 +415,14 @@
|
|||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "cf7095a5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Fonction d'activation optimale"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 5,
|
||||
|
@ -517,6 +570,14 @@
|
|||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "569f6393",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Valeur optimale d'alpha"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 62,
|
||||
|
@ -631,6 +692,14 @@
|
|||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c46d042a",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Matrice de confusion"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 6,
|
||||
|
|
92
knn.ipynb
92
knn.ipynb
|
@ -1,9 +1,17 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "87214e92",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Import du dataset MNIST"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 1,
|
||||
"id": "b4978985",
|
||||
"execution_count": null,
|
||||
"id": "c2e6fa5e",
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
|
@ -11,6 +19,14 @@
|
|||
"mnist = fetch_openml('mnist_784') "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "a36d996c",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Manpulation du jeu de données"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
|
@ -703,6 +719,14 @@
|
|||
"print(mnist.target[4])"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "73194d9b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Premier entraînement"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 45,
|
||||
|
@ -747,6 +771,14 @@
|
|||
"clf.fit(xtrain, ytrain)"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "d7d80cd2",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Vérification de la prédiction faite avec l'algorithme entraîné"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 68,
|
||||
|
@ -781,6 +813,14 @@
|
|||
"print(clf.predict([data[4]]))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "8eb362f6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Scores obtenus"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 71,
|
||||
|
@ -805,6 +845,14 @@
|
|||
"print(clf.score(xtrain, ytrain))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "aac45aac",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Nombre de voisins optimal"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 3,
|
||||
|
@ -860,6 +908,14 @@
|
|||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "411f6841",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Séparation optimale entre l'entraînement et le test "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 18,
|
||||
|
@ -924,6 +980,14 @@
|
|||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "b3563ad5",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Echantillonnage optimal du dataset"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 20,
|
||||
|
@ -985,6 +1049,14 @@
|
|||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "e387a386",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Distance optimale"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 25,
|
||||
|
@ -1055,6 +1127,14 @@
|
|||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "c863ff41",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Meilleure valeur de n_jobs "
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 31,
|
||||
|
@ -1129,6 +1209,14 @@
|
|||
"print(f'Temps d\\'exécution : {elapsed:.4}ms')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "1a26da41",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Matrice de confusion"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
|
|
44
svm.ipynb
44
svm.ipynb
|
@ -1,5 +1,13 @@
|
|||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "557db042",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Import du dataset"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 15,
|
||||
|
@ -11,6 +19,14 @@
|
|||
"mnist = fetch_openml('mnist_784')"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2295fc5b",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Premier entraînement et scores"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 16,
|
||||
|
@ -72,6 +88,14 @@
|
|||
"print(classifier.score(xtest, ytest))"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "32caafa6",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Meilleur kernel à utiliser"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 7,
|
||||
|
@ -196,6 +220,8 @@
|
|||
}
|
||||
],
|
||||
"source": [
|
||||
"## Il est nécessaire de donner à l'algorithme en entrée une matrice carrée. \n",
|
||||
"## Ne sachant pas comment faire nous avons décidé de ne pas prendre en compte ce type. \n",
|
||||
"start = time.time()\n",
|
||||
"clsvm = SVC(kernel='precomputed')\n",
|
||||
"clsvm.fit(xtrain, ytrain) \n",
|
||||
|
@ -243,6 +269,14 @@
|
|||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "218f2c18",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Valeur optimale du paramètre C"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 8,
|
||||
|
@ -304,6 +338,14 @@
|
|||
"plt.show()"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"id": "2ddd41c7",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"## Matrice de confusion"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 19,
|
||||
|
@ -339,7 +381,7 @@
|
|||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 58,
|
||||
"id": "14cd493b",
|
||||
"id": "7ea957d9",
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
|
|
Loading…
Reference in a new issue