Browse Source

Added comments

Morgane Foussats 1 year ago
parent
commit
7daeec2ef4
3 changed files with 206 additions and 7 deletions
  1. 73
    4
      ann.ipynb
  2. 90
    2
      knn.ipynb
  3. 43
    1
      svm.ipynb

+ 73
- 4
ann.ipynb View File

@@ -1,6 +1,14 @@
1 1
 {
2 2
  "cells": [
3 3
   {
4
+   "cell_type": "markdown",
5
+   "id": "4d162f18",
6
+   "metadata": {},
7
+   "source": [
8
+    "## Import du dataset"
9
+   ]
10
+  },
11
+  {
4 12
    "cell_type": "code",
5 13
    "execution_count": 1,
6 14
    "id": "861d1252",
@@ -24,6 +32,14 @@
24 32
    ]
25 33
   },
26 34
   {
35
+   "cell_type": "markdown",
36
+   "id": "95e0ce45",
37
+   "metadata": {},
38
+   "source": [
39
+    "## Echantillonnage du dataset"
40
+   ]
41
+  },
42
+  {
27 43
    "cell_type": "code",
28 44
    "execution_count": 4,
29 45
    "id": "91e6919c",
@@ -34,10 +50,15 @@
34 50
     "data = mnist.data.values[echantillon]\n",
35 51
     "target = mnist.target[echantillon]\n",
36 52
     "trainSize = 17500/25000\n",
37
-    "xtrain,  xtest,  ytrain,  ytest  =  train_test_split(data,  target, train_size=trainSize)\n",
38
-    "#trainSize = 49000/len(data)\n",
39
-    "#xtrain,  xtest,  ytrain,  ytest  =  train_test_split(data,  target, \n",
40
-    "#train_size=trainSize)"
53
+    "xtrain,  xtest,  ytrain,  ytest  =  train_test_split(data,  target, train_size=trainSize)"
54
+   ]
55
+  },
56
+  {
57
+   "cell_type": "markdown",
58
+   "id": "f35a2a10",
59
+   "metadata": {},
60
+   "source": [
61
+    "## Premier entraînement et scores"
41 62
    ]
42 63
   },
43 64
   {
@@ -111,6 +132,14 @@
111 132
    ]
112 133
   },
113 134
   {
135
+   "cell_type": "markdown",
136
+   "id": "d5d7d4c1",
137
+   "metadata": {},
138
+   "source": [
139
+    "## Nombre de couches cachées optimal"
140
+   ]
141
+  },
142
+  {
114 143
    "cell_type": "code",
115 144
    "execution_count": 14,
116 145
    "id": "44b6cf69",
@@ -150,6 +179,14 @@
150 179
    ]
151 180
   },
152 181
   {
182
+   "cell_type": "markdown",
183
+   "id": "e4b13f21",
184
+   "metadata": {},
185
+   "source": [
186
+    "## Nombre de couches cachées et de neurones par couche optimaux"
187
+   ]
188
+  },
189
+  {
153 190
    "cell_type": "code",
154 191
    "execution_count": 46,
155 192
    "id": "7a889d9e",
@@ -232,6 +269,14 @@
232 269
    ]
233 270
   },
234 271
   {
272
+   "cell_type": "markdown",
273
+   "id": "11adbe03",
274
+   "metadata": {},
275
+   "source": [
276
+    "## Algorithme d'optimisation optimal"
277
+   ]
278
+  },
279
+  {
235 280
    "cell_type": "code",
236 281
    "execution_count": 47,
237 282
    "id": "4356994c",
@@ -371,6 +416,14 @@
371 416
    ]
372 417
   },
373 418
   {
419
+   "cell_type": "markdown",
420
+   "id": "cf7095a5",
421
+   "metadata": {},
422
+   "source": [
423
+    "## Fonction d'activation optimale"
424
+   ]
425
+  },
426
+  {
374 427
    "cell_type": "code",
375 428
    "execution_count": 5,
376 429
    "id": "11f49da3",
@@ -518,6 +571,14 @@
518 571
    ]
519 572
   },
520 573
   {
574
+   "cell_type": "markdown",
575
+   "id": "569f6393",
576
+   "metadata": {},
577
+   "source": [
578
+    "## Valeur optimale d'alpha"
579
+   ]
580
+  },
581
+  {
521 582
    "cell_type": "code",
522 583
    "execution_count": 62,
523 584
    "id": "e568c62e",
@@ -632,6 +693,14 @@
632 693
    ]
633 694
   },
634 695
   {
696
+   "cell_type": "markdown",
697
+   "id": "c46d042a",
698
+   "metadata": {},
699
+   "source": [
700
+    "## Matrice de confusion"
701
+   ]
702
+  },
703
+  {
635 704
    "cell_type": "code",
636 705
    "execution_count": 6,
637 706
    "id": "9fab621a",

+ 90
- 2
knn.ipynb View File

@@ -1,9 +1,17 @@
1 1
 {
2 2
  "cells": [
3 3
   {
4
+   "cell_type": "markdown",
5
+   "id": "87214e92",
6
+   "metadata": {},
7
+   "source": [
8
+    "## Import du dataset MNIST"
9
+   ]
10
+  },
11
+  {
4 12
    "cell_type": "code",
5
-   "execution_count": 1,
6
-   "id": "b4978985",
13
+   "execution_count": null,
14
+   "id": "c2e6fa5e",
7 15
    "metadata": {},
8 16
    "outputs": [],
9 17
    "source": [
@@ -12,6 +20,14 @@
12 20
    ]
13 21
   },
14 22
   {
23
+   "cell_type": "markdown",
24
+   "id": "a36d996c",
25
+   "metadata": {},
26
+   "source": [
27
+    "## Manpulation du jeu de données"
28
+   ]
29
+  },
30
+  {
15 31
    "cell_type": "code",
16 32
    "execution_count": 8,
17 33
    "id": "30516666",
@@ -704,6 +720,14 @@
704 720
    ]
705 721
   },
706 722
   {
723
+   "cell_type": "markdown",
724
+   "id": "73194d9b",
725
+   "metadata": {},
726
+   "source": [
727
+    "## Premier entraînement"
728
+   ]
729
+  },
730
+  {
707 731
    "cell_type": "code",
708 732
    "execution_count": 45,
709 733
    "id": "1992f78a",
@@ -748,6 +772,14 @@
748 772
    ]
749 773
   },
750 774
   {
775
+   "cell_type": "markdown",
776
+   "id": "d7d80cd2",
777
+   "metadata": {},
778
+   "source": [
779
+    "## Vérification de la prédiction faite avec l'algorithme entraîné"
780
+   ]
781
+  },
782
+  {
751 783
    "cell_type": "code",
752 784
    "execution_count": 68,
753 785
    "id": "de3692e9",
@@ -782,6 +814,14 @@
782 814
    ]
783 815
   },
784 816
   {
817
+   "cell_type": "markdown",
818
+   "id": "8eb362f6",
819
+   "metadata": {},
820
+   "source": [
821
+    "## Scores obtenus"
822
+   ]
823
+  },
824
+  {
785 825
    "cell_type": "code",
786 826
    "execution_count": 71,
787 827
    "id": "5ad97acb",
@@ -806,6 +846,14 @@
806 846
    ]
807 847
   },
808 848
   {
849
+   "cell_type": "markdown",
850
+   "id": "aac45aac",
851
+   "metadata": {},
852
+   "source": [
853
+    "## Nombre de voisins optimal"
854
+   ]
855
+  },
856
+  {
809 857
    "cell_type": "code",
810 858
    "execution_count": 3,
811 859
    "id": "29bae5b3",
@@ -861,6 +909,14 @@
861 909
    ]
862 910
   },
863 911
   {
912
+   "cell_type": "markdown",
913
+   "id": "411f6841",
914
+   "metadata": {},
915
+   "source": [
916
+    "## Séparation optimale entre l'entraînement et le test "
917
+   ]
918
+  },
919
+  {
864 920
    "cell_type": "code",
865 921
    "execution_count": 18,
866 922
    "id": "aa975189",
@@ -925,6 +981,14 @@
925 981
    ]
926 982
   },
927 983
   {
984
+   "cell_type": "markdown",
985
+   "id": "b3563ad5",
986
+   "metadata": {},
987
+   "source": [
988
+    "## Echantillonnage optimal du dataset"
989
+   ]
990
+  },
991
+  {
928 992
    "cell_type": "code",
929 993
    "execution_count": 20,
930 994
    "id": "551cdf20",
@@ -986,6 +1050,14 @@
986 1050
    ]
987 1051
   },
988 1052
   {
1053
+   "cell_type": "markdown",
1054
+   "id": "e387a386",
1055
+   "metadata": {},
1056
+   "source": [
1057
+    "## Distance optimale"
1058
+   ]
1059
+  },
1060
+  {
989 1061
    "cell_type": "code",
990 1062
    "execution_count": 25,
991 1063
    "id": "6b7b2aec",
@@ -1056,6 +1128,14 @@
1056 1128
    ]
1057 1129
   },
1058 1130
   {
1131
+   "cell_type": "markdown",
1132
+   "id": "c863ff41",
1133
+   "metadata": {},
1134
+   "source": [
1135
+    "## Meilleure valeur de n_jobs "
1136
+   ]
1137
+  },
1138
+  {
1059 1139
    "cell_type": "code",
1060 1140
    "execution_count": 31,
1061 1141
    "id": "6575833c",
@@ -1130,6 +1210,14 @@
1130 1210
    ]
1131 1211
   },
1132 1212
   {
1213
+   "cell_type": "markdown",
1214
+   "id": "1a26da41",
1215
+   "metadata": {},
1216
+   "source": [
1217
+    "## Matrice de confusion"
1218
+   ]
1219
+  },
1220
+  {
1133 1221
    "cell_type": "code",
1134 1222
    "execution_count": 7,
1135 1223
    "id": "94d331a4",

+ 43
- 1
svm.ipynb View File

@@ -1,6 +1,14 @@
1 1
 {
2 2
  "cells": [
3 3
   {
4
+   "cell_type": "markdown",
5
+   "id": "557db042",
6
+   "metadata": {},
7
+   "source": [
8
+    "## Import du dataset"
9
+   ]
10
+  },
11
+  {
4 12
    "cell_type": "code",
5 13
    "execution_count": 15,
6 14
    "id": "f574b533",
@@ -12,6 +20,14 @@
12 20
    ]
13 21
   },
14 22
   {
23
+   "cell_type": "markdown",
24
+   "id": "2295fc5b",
25
+   "metadata": {},
26
+   "source": [
27
+    "## Premier entraînement et scores"
28
+   ]
29
+  },
30
+  {
15 31
    "cell_type": "code",
16 32
    "execution_count": 16,
17 33
    "id": "18715d1a",
@@ -73,6 +89,14 @@
73 89
    ]
74 90
   },
75 91
   {
92
+   "cell_type": "markdown",
93
+   "id": "32caafa6",
94
+   "metadata": {},
95
+   "source": [
96
+    "## Meilleur kernel à utiliser"
97
+   ]
98
+  },
99
+  {
76 100
    "cell_type": "code",
77 101
    "execution_count": 7,
78 102
    "id": "57f74503",
@@ -196,6 +220,8 @@
196 220
     }
197 221
    ],
198 222
    "source": [
223
+    "## Il est nécessaire de donner à l'algorithme en entrée une matrice carrée. \n",
224
+    "## Ne sachant pas comment faire nous avons décidé de ne pas prendre en compte ce type. \n",
199 225
     "start = time.time()\n",
200 226
     "clsvm = SVC(kernel='precomputed')\n",
201 227
     "clsvm.fit(xtrain, ytrain) \n",
@@ -244,6 +270,14 @@
244 270
    ]
245 271
   },
246 272
   {
273
+   "cell_type": "markdown",
274
+   "id": "218f2c18",
275
+   "metadata": {},
276
+   "source": [
277
+    "## Valeur optimale du paramètre C"
278
+   ]
279
+  },
280
+  {
247 281
    "cell_type": "code",
248 282
    "execution_count": 8,
249 283
    "id": "79cc2019",
@@ -305,6 +339,14 @@
305 339
    ]
306 340
   },
307 341
   {
342
+   "cell_type": "markdown",
343
+   "id": "2ddd41c7",
344
+   "metadata": {},
345
+   "source": [
346
+    "## Matrice de confusion"
347
+   ]
348
+  },
349
+  {
308 350
    "cell_type": "code",
309 351
    "execution_count": 19,
310 352
    "id": "7a7ecd10",
@@ -339,7 +381,7 @@
339 381
   {
340 382
    "cell_type": "code",
341 383
    "execution_count": 58,
342
-   "id": "14cd493b",
384
+   "id": "7ea957d9",
343 385
    "metadata": {},
344 386
    "outputs": [
345 387
     {

Loading…
Cancel
Save