recovered tp3.py
This commit is contained in:
parent
277dafbfb7
commit
77f08cfbd5
1 changed files with 35 additions and 49 deletions
84
tp3.py
84
tp3.py
|
@ -9,6 +9,8 @@ from sklearn.neural_network import MLPClassifier
|
||||||
from sklearn.model_selection import train_test_split
|
from sklearn.model_selection import train_test_split
|
||||||
from sklearn.model_selection import KFold
|
from sklearn.model_selection import KFold
|
||||||
from sklearn.metrics import precision_score
|
from sklearn.metrics import precision_score
|
||||||
|
from sklearn.metrics import confusion_matrix
|
||||||
|
from sklearn.svm import SVC
|
||||||
import random
|
import random
|
||||||
import time
|
import time
|
||||||
|
|
||||||
|
@ -18,7 +20,6 @@ mnist = fetch_openml('mnist_784')
|
||||||
"""
|
"""
|
||||||
|
|
||||||
"""
|
"""
|
||||||
---Ex 1---
|
|
||||||
images = mnist.data.values.reshape((-1, 28, 28))
|
images = mnist.data.values.reshape((-1, 28, 28))
|
||||||
plt.imshow(images[0],cmap=plt.cm.gray_r,interpolation="nearest")
|
plt.imshow(images[0],cmap=plt.cm.gray_r,interpolation="nearest")
|
||||||
plt.show()
|
plt.show()
|
||||||
|
@ -26,8 +27,6 @@ plt.show()
|
||||||
print(mnist.target[0])
|
print(mnist.target[0])
|
||||||
"""
|
"""
|
||||||
|
|
||||||
"""
|
|
||||||
---Ex 2---
|
|
||||||
"""
|
"""
|
||||||
indices = [i for i in range(len(mnist.data))]
|
indices = [i for i in range(len(mnist.data))]
|
||||||
random.shuffle(indices)
|
random.shuffle(indices)
|
||||||
|
@ -35,60 +34,47 @@ indices = indices[:15000]
|
||||||
|
|
||||||
data = [mnist.data.values[i] for i in indices]
|
data = [mnist.data.values[i] for i in indices]
|
||||||
target = [mnist.target[i] for i in indices]
|
target = [mnist.target[i] for i in indices]
|
||||||
|
"""
|
||||||
bestClf = None
|
|
||||||
bestScore = 0
|
|
||||||
scores = []
|
|
||||||
|
|
||||||
train_sizes = [0.05*i for i in range(1,20)]
|
|
||||||
|
|
||||||
|
|
||||||
xtrain, xtest, ytrain, ytest = train_test_split(data, target, train_size=0.7)
|
xtrain, xtest, ytrain, ytest = train_test_split(data, target, train_size=0.7)
|
||||||
"""
|
|
||||||
network = MLPClassifier(hidden_layer_sizes = (50))
|
|
||||||
network.fit(xtrain, ytrain)
|
|
||||||
ytest_pred = clf.predict(xtest)
|
|
||||||
print("Average = macro:")
|
|
||||||
print(precision_score(ytest, ytest_pred, average = "macro"))
|
|
||||||
print("Average = None:")
|
|
||||||
print(precision_score(ytest, ytest_pred, average = None))
|
|
||||||
|
|
||||||
|
clf = SVC()
|
||||||
|
clf.fit(xtrain, ytrain)
|
||||||
|
ypred = clf.predict(xtest)
|
||||||
|
print(confusion_matrix(ytest, ypred))
|
||||||
|
"""
|
||||||
print(target[4])
|
print(target[4])
|
||||||
print(network.predict(data[4].reshape(1,-1)))
|
print(clf.predict(data[4].reshape(1,-1)))
|
||||||
plt.imshow(data[4].reshape(28, 28), cmap=plt.cm.gray_r, interpolation="nearest")
|
plt.imshow(data[4].reshape(28, 28), cmap=plt.cm.gray_r, interpolation="nearest")
|
||||||
plt.show()
|
plt.show()
|
||||||
"""
|
"""
|
||||||
|
|
||||||
"""
|
|
||||||
n_layers = [i for i in range(1,51)]
|
|
||||||
|
|
||||||
|
|
||||||
for n in n_layers:
|
|
||||||
print(n)
|
|
||||||
network = MLPClassifier(hidden_layer_sizes = (50,)*n)
|
|
||||||
network.fit(xtrain, ytrain)
|
|
||||||
scores += [network.score(xtest, ytest)]
|
|
||||||
|
|
||||||
plt.plot(n_layers, scores)
|
|
||||||
"""
|
|
||||||
|
|
||||||
"""
|
"""
|
||||||
for _ in range(5):
|
kernels = ["linear", "poly", "rbf", "sigmoid"]
|
||||||
n_layers = random.randint(1,3)
|
for k in kernels:
|
||||||
layer_size = tuple([random.randint(10,300) for _ in range(n_layers)])
|
print(k + ":")
|
||||||
print(layer_size)
|
|
||||||
|
|
||||||
network = MLPClassifier(hidden_layer_sizes = layer_size, solver = "adam", activation = "relu")
|
|
||||||
network.fit(xtrain, ytrain)
|
|
||||||
print(f"training time = {time.time() - start_time}, score = {network.score(xtest, ytest)}")
|
|
||||||
"""
|
|
||||||
|
|
||||||
"""
|
|
||||||
solvers = ["lbfgs", "sgd", "adam"]
|
|
||||||
for s in solvers:
|
|
||||||
print(s + ":")
|
|
||||||
start_time = time.time()
|
start_time = time.time()
|
||||||
network = MLPClassifier(hidden_layer_sizes = (50,)*5, solver = s)
|
clf = SVC(kernel = k)
|
||||||
network.fit(xtrain, ytrain)
|
clf.fit(xtrain, ytrain)
|
||||||
print(f"training time = {time.time() - start_time}, score = {network.score(xtest, ytest)}")
|
print(f"training time = {time.time() - start_time}, score = {clf.score(xtest, ytest)}")
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
"""
|
||||||
|
scores = []
|
||||||
|
times = []
|
||||||
|
tolerance=[i*0.1 for i in range(1,10,2)]
|
||||||
|
for C in tolerance:
|
||||||
|
print(f"C = {C} :")
|
||||||
|
start_time = time.time()
|
||||||
|
clf = SVC(C = C)
|
||||||
|
clf.fit(xtrain, ytrain)
|
||||||
|
training_time = time.time() - start_time
|
||||||
|
score = clf.score(xtest, ytest)
|
||||||
|
times += [training_time]
|
||||||
|
scores += [score]
|
||||||
|
|
||||||
|
plt.plot(tolerance, scores)
|
||||||
|
plt.show()
|
||||||
|
plt.plot(tolerance, times)
|
||||||
|
"""
|
||||||
|
|
Loading…
Reference in a new issue