Projet BERTA Pauline NUNES Joao

這個提交存在於:
Joao Conceicao Nunes 2020-12-17 11:46:22 +01:00
當前提交 ce6a7448ae
共有 143 個檔案被更改,包括 1990232 行新增0 行删除

二進制
.RData 一般檔案

未顯示二進位檔案。

507
.Rhistory 一般檔案
查看文件

@ -0,0 +1,507 @@
#
r2 = which(r1 == TRUE)
#
vowels = c('a','e','i','o','u','y')
alphabet = letters
r1 = letters %in% vowels
#Le result est un vecteur de boolean
#avec true quand les deux elements sont
#egaux, et false quand c l'inverse
v1 = seq(6)
#
#r2 = which(r1 == TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
?which
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
?letters
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
?which
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
?strsplit
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
myname_split[0]
myname_split[1]
myname_split[1][0]
myname_split[2
myname_split[2]
myname_split[2].[0]
myname_split[1].[0]
myname_split[[1]][0]
myname_split[[1]][1]
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
print(r6)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP1_2.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
rep(c(0,1),13)
c(1,26,1)
seq(1,26,1)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
install.packages("ggplot2")
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
head
msleep
head?
s
?head
head(msleep)
?names
?head
head(letters)
letters
head(letters, n = 7)
head(msleep, n=2)
?str
str(1:12)
str(freeny)
str(msleep)
?summary
sumamry(letters)
summary(letters)
summary(msleep)
msleep
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
msleep
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
msleep
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
msleep
msleep
?na.omit
msleep
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
summary("pauline")
summary('p','a','u')
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
summary(strsplit(Pauline, NULL))
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
summary(strsplit("Pauline", NULL))
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
summary(strsplit("Pauline", NULL))
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
View(p600)
p600[[1]][1]
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
letters %in% p600
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', encoding = 'ASCII', echo=TRUE)
?substr
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
msleep
which(msleep[[1]] ==Cow)
which(msleep[[1]] =="Cow")
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
msleep
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
which( msleep[[1]] == "w")
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
p777 <- which( msleep[[1]] == "w")
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
install.packages("rapportools")
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
source('C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/TP2_1.R', echo=TRUE)
n
n
n
n
library(tidyverse)
library(ggplot2)
setwd("C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/Projet")
##########################
#Acquisition of the data #
##########################
#Variable containing all the information
tab <- read.table("yob1880.txt",h=FALSE,sep=",")
Year <- matrix(1880,ncol=1,nrow = nrow(tab))
tab <- cbind(Year,tab)
for (i in seq(1881,2019,1)){
#Dynamic name for the source txt file
namesource <- "yob"
namesource <- paste(c(namesource,i),collapse = "")
namesource <- paste (c(namesource,".txt"), collapse="")
# Table used inside the for loop to extrat the informations
tabinter <- read.table(namesource,h=FALSE,sep=",")
#Converting the table into the format "Year,Name,Sex,Number"
Year <- matrix(i,ncol=1,nrow = nrow(tabinter))
tabinter <- cbind(Year,tabinter)
#Adding the new informations to the final table
tab <- rbind(tab,tabinter)
}
final_table <- tab%>%
rename(
Name = V1,
Sex = V2,
Number = V3
)
####################################################################
# Partie 1 - L'influence de Marylin depuis 1880 #
####################################################################
MarilynFemme <- final_table %>%
filter(Name == "Marilyn")%>%
group_by(Year,Number)%>%
filter(Sex=='F')
MarilynHomme <- final_table %>%
filter(Name == "Marilyn")%>%
group_by(Year,Number)%>%
filter(Sex=='M')
ggplot(MarilynFemme,aes(x=Year,y=Number, fill=Number))+
geom_bar(stat = "identity")+
ggtitle("Evolution des naissances avec le prénom Marilyn depuis 1880, femmes")
ggplot(MarilynHomme,aes(x=Year,y=Number, fill=Number))+
geom_bar(stat = "identity")+
ggtitle("Evolution des naissances avec le prénom Marilyn depuis 1880, hommes")
AdolphHomme <- final_table %>%
filter(Name == "Adolph")%>%
group_by(Year,Number)%>%
filter(Sex=='M')
ggplot(AdolphHomme,aes(x=Year,y=Number, fill=Number))+
geom_bar(stat = "identity")+
ggtitle("Evolution des naissances avec le prénom Adolph depuis 1880, hommes")
##################################
# 1.1 - Number of births by year #
##################################
NaissancesAnDepuis1880 <- final_table %>%
group_by(Year)%>%
summarise(
NbrBirths = sum(Number)
)
ggplot(NaissancesAnDepuis1880,aes(x=Year,y=NbrBirths, color= NbrBirths))+
geom_line(size = 3)+
ggtitle("Nombre de naissances par année depuis 1880, sexes confondus")
NaissancesAn6090 <- final_table %>%
group_by(Year,Sex)%>%
filter(Year < 1990)%>%
filter(Year> 1960)%>%
summarise(NbrBirths = sum(Number))
ggplot(NaissancesAn6090,aes(x=Year,y=NbrBirths, color = Sex))+
geom_line(size=5)+
geom_point()+
ggtitle("Nombre de naissances par année, entre 1960 et 1990")+
NaissancesSexeSep <- final_table %>%
group_by(Year,Sex)%>%
summarise(NbrBirths = sum(Number))
ggplot(NaissancesSexeSep,aes(x=Year,y=NbrBirths, color = Sex))+
geom_line(size=5)+
geom_point()+
ggtitle("Nombre de naissances par année, sexe séparés")
NaissancesSexeSep <- final_table %>%
group_by(Year,Sex)%>%
summarise(NbrBirths = sum(Number))
ggplot(NaissancesSexeSep,aes(x=Year,y=NbrBirths, color = Sex))+
geom_line(size=5)+
geom_point()+
ggtitle("Nombre de naissances par année, sexe séparés")
PrenomsHommeDepuis1880 <- final_table %>%
group_by(Name)%>%
filter(Sex == "M")%>%
summarise(
NumberOfBirths = sum(Number)
)%>%
arrange(desc(NumberOfBirths))%>%
top_n(5)
ggplot(PrenomsHommeDepuis1880,aes(x=Name,y=NumberOfBirths))+
geom_bar(stat = "identity")+
ggtitle("Most given male names since 1880")
# Create Data
PrenomsHommeDepuis1880 <- data.frame(
name=c('James','John','Robert','Michael','William','Others'),
value= c(2.89,2.86,2.70,2.44,2.34,86.77)
)
# Basic piechart
ggplot(data, aes(x="", y=value, fill=name)) +
geom_bar(stat="identity", width=1) +
coord_polar("y", start=0)+
theme_void()
# Create Data
PrenomsHommeDepuis1880 <- data.frame(
name=c('James','John','Robert','Michael','William','Others'),
value= c(2.89,2.86,2.70,2.44,2.34,86.77)
)
# Basic piechart
ggplot(data, aes(x="", y=value, fill=name)) +
geom_bar(stat="identity", width=1) +
coord_polar("y", start=0)+
theme_void()
# Create Data
PrenomsHommeDepuis1880 <- data.frame(
name=c('James','John','Robert','Michael','William','Others'),
value= c(2.89,2.86,2.70,2.44,2.34,86.77)
)
# Basic piechart
ggplot(PrenomsHommeDepuis1880, aes(x="", y=value, fill=name)) +
geom_bar(stat="identity", width=1) +
coord_polar("y", start=0)+
theme_void()
PrenomsFemmesDepuis1880 <- final_table %>%
group_by(Name)%>%
filter(Sex == "F")%>%
summarise(
NumberOfBirths = sum(Number)
)%>%
arrange(desc(NumberOfBirths))%>%
top_n(5)
ggplot(PrenomsFemmesDepuis1880,aes(x=Name,y=NumberOfBirths))+
geom_bar(stat = "identity")+
ggtitle("Most given female names since 1880")
name= c('Mary','Elizabeth','Patricia','Jennifer','Linda','Others')
value= c(2.35,0.94,0.89,0.84,0.83,94.15)
# Create Data
PrenonesFemmes1880 <- data.frame(name,value)
# Basic piechart
ggplot(PrenonesFemmes1880, aes(x="", y=value, fill=name)) +
geom_bar(stat="identity", width=1) +
coord_polar("y", start=0)+
theme_void()
PrenomsHommeDepuis2000 <- final_table %>%
group_by(Name)%>%
filter(Sex == "M")%>%
filter(Year>2000)%>%
summarise(
NumberOfBirths = sum(Number)
)%>%
arrange(desc(NumberOfBirths))%>%
top_n(5)
ggplot(PrenomsHommeDepuis2000,aes(x=Name,y=NumberOfBirths))+
geom_bar(stat = "identity")+
ggtitle("Most given male names since 2000")
NbrMaleBirths2000 <- final_table %>%
group_by(Sex)%>%
filter(Sex == "M")%>%
filter(Year>2000)%>%
summarise(
NumberOfBirths = sum(Number)
)
top5MaleNames2000 <- tab233%>% summarise(
N=sum(NumberOfBirths)
)
OtherNames2000 <- (NbrMaleBirths2000[2] - (top5MaleNames2000[1]))
# Create Data
PrenomsHomme2000 <- data.frame(
name=c('Jacob','Michael','Ethan','William','Mathew','Others'),
value= c(402290,363299,335423,333255,317778,OtherNames2000)
)
# Basic piechart
ggplot(PrenomsHomme2000, aes(x="", y=value, fill=name)) +
geom_bar(stat="identity", width=1) +
coord_polar("y", start=0)+
theme_void()
NbrMaleBirths2000 <- final_table %>%
group_by(Sex)%>%
filter(Sex == "M")%>%
filter(Year>2000)%>%
summarise(
NumberOfBirths = sum(Number)
)
top5MaleNames2000 <- tab233%>% summarise(
N=sum(NumberOfBirths)
)
OtherMaleNames2000 <- (NbrMaleBirths2000[2] - (top5MaleNames2000[1]))
# Create Data
PrenomsHomme2000 <- data.frame(
name=c('Jacob','Michael','Ethan','William','Mathew','Others'),
value= c(402290,363299,335423,333255,317778,OtherMaleNames2000)
)
NbrMaleBirths2000 <- final_table %>%
group_by(Sex)%>%
filter(Sex == "M")%>%
filter(Year>2000)%>%
summarise(
NumberOfBirths = sum(Number)
)
top5MaleNames2000 <- tab233%>% summarise(
N=sum(NumberOfBirths)
)
OtherMaleNames2000 <- (NbrMaleBirths2000[2] - (top5MaleNames2000[1]))
#########
PrenomsHommeDepuis2000 <- final_table %>%
group_by(Name)%>%
filter(Sex == "M")%>%
filter(Year>2000)%>%
summarise(
NumberOfBirths = sum(Number)
)%>%
arrange(desc(NumberOfBirths))%>%
top_n(5)
ggplot(PrenomsHommeDepuis2000,aes(x=Name,y=NumberOfBirths))+
geom_bar(stat = "identity")+
ggtitle("Most given male names since 2000")
NbrMaleBirths2000 <- final_table %>%
group_by(Sex)%>%
filter(Sex == "M")%>%
filter(Year>2000)%>%
summarise(
NumberOfBirths = sum(Number)
)
top5MaleNames2000 <- PrenomsHommeDepuis2000%>% summarise(
N=sum(NumberOfBirths)
)
OtherMaleNames2000 <- (NbrMaleBirths2000[2] - (top5MaleNames2000[1]))
# Create Data
PrenomsHomme2000 <- data.frame(
name=c('Jacob','Michael','Ethan','William','Mathew','Others'),
value= c(402290,363299,335423,333255,317778,OtherMaleNames2000)
)
# Basic piechart
ggplot(PrenomsHomme2000, aes(x="", y=value, fill=name)) +
geom_bar(stat="identity", width=1) +
coord_polar("y", start=0)+
theme_void()
#########
PrenomsFemmeDepuis2000 <- final_table %>%
group_by(Name)%>%
filter(Sex == "F")%>%
filter(Year>2000)%>%
summarise(
NumberOfBirths = sum(Number)
)%>%
arrange(desc(NumberOfBirths))%>%
top_n(5)
ggplot(PrenomsFemmeDepuis2000,aes(x=Name,y=NumberOfBirths))+
geom_bar(stat = "identity")+
ggtitle("Most given female names since 2000")
NbrFemaleBirths2000 <- final_table %>%
group_by(Sex)%>%
filter(Sex == "F")%>%
filter(Year>2000)%>%
summarise(
NumberOfBirths = sum(Number)
)
top5FemaleNames2000 <- PrenomsFemmeDepuis2000%>% summarise(
N=sum(NumberOfBirths)
)
OtherFemaleNames2000 <- (NbrMaleBirths2000[2] - (top5FemaleNames2000[1]))
name= c('Emma','Olivia','Emily','Isabella','Sophia','Others')
value= c(363402,327356,315202,313471,293494,OtherFemaleNames2000)
# Create Data
PrenomsFemme2000 <- data.frame(name,value)
# Basic piechart
ggplot(PrenomsFemme2000, aes(x="", y=value, fill=name)) +
geom_bar(stat="identity", width=1) +
coord_polar("y", start=0)+
theme_void()
EvolutionJames <- final_table %>%
group_by(Year)%>%
filter(Name == "James")%>%
summarise(
NumberOfBirths = sum(Number)
)
ggplot(EvolutionJames,aes(x=Year,y=NumberOfBirths))+
geom_line(size=5)+
geom_point()+
ggtitle("The evolution of the name James since 1880")
# The evolution of the name Mary since 1880 #
##############################################
EvolutionMary <- final_table %>%
group_by(Year)%>%
filter(Name == "Mary")%>%
summarise(
NumberOfBirths = sum(Number)
)
ggplot(EvolutionMary,aes(x=Year,y=NumberOfBirths))+
geom_line(size=5)+
geom_point()+
ggtitle("The evolution of the name Mary since 1880")

324
script.R 一般檔案
查看文件

@ -0,0 +1,324 @@
library(tidyverse)
library(ggplot2)
setwd("C:/Users/nunes/OneDrive/Bureau/WorkDay/INSA/Big_Data/Projet")
##########################
#Acquisition of the data #
##########################
#Variable containing all the information
tab <- read.table("yob1880.txt",h=FALSE,sep=",")
Year <- matrix(1880,ncol=1,nrow = nrow(tab))
tab <- cbind(Year,tab)
for (i in seq(1881,2019,1)){
#Dynamic name for the source txt file
namesource <- "yob"
namesource <- paste(c(namesource,i),collapse = "")
namesource <- paste (c(namesource,".txt"), collapse="")
# Table used inside the for loop to extrat the informations
tabinter <- read.table(namesource,h=FALSE,sep=",")
#Converting the table into the format "Year,Name,Sex,Number"
Year <- matrix(i,ncol=1,nrow = nrow(tabinter))
tabinter <- cbind(Year,tabinter)
#Adding the new informations to the final table
tab <- rbind(tab,tabinter)
}
final_table <- tab%>%
rename(
Name = V1,
Sex = V2,
Number = V3
)
####################################################################
# Partie 1 - L'influence de Marylin depuis 1880 #
####################################################################
MarilynFemme <- final_table %>%
filter(Name == "Marilyn")%>%
group_by(Year,Number)%>%
filter(Sex=='F')
MarilynHomme <- final_table %>%
filter(Name == "Marilyn")%>%
group_by(Year,Number)%>%
filter(Sex=='M')
ggplot(MarilynFemme,aes(x=Year,y=Number, fill=Number))+
geom_bar(stat = "identity")+
ggtitle("Evolution des naissances avec le prénom Marilyn depuis 1880, femmes")
ggplot(MarilynHomme,aes(x=Year,y=Number, fill=Number))+
geom_bar(stat = "identity")+
ggtitle("Evolution des naissances avec le prénom Marilyn depuis 1880, hommes")
AdolphHomme <- final_table %>%
filter(Name == "Adolph")%>%
group_by(Year,Number)%>%
filter(Sex=='M')
ggplot(AdolphHomme,aes(x=Year,y=Number, fill=Number))+
geom_bar(stat = "identity")+
ggtitle("Evolution des naissances avec le prénom Adolph depuis 1880, hommes")
####################################################################
# Partie 2 - Nombres de naissances depuis 1880 #
####################################################################
##################################
# 1.1 - Number of births by year #
##################################
NaissancesAnDepuis1880 <- final_table %>%
group_by(Year)%>%
summarise(
NbrBirths = sum(Number)
)
ggplot(NaissancesAnDepuis1880,aes(x=Year,y=NbrBirths, color= NbrBirths))+
geom_line(size = 3)+
ggtitle("Nombre de naissances par année depuis 1880, sexes confondus")
NaissancesAn6090 <- final_table %>%
group_by(Year,Sex)%>%
filter(Year < 1990)%>%
filter(Year> 1960)%>%
summarise(NbrBirths = sum(Number))
ggplot(NaissancesAn6090,aes(x=Year,y=NbrBirths, color = Sex))+
geom_line(size=5)+
geom_point()+
ggtitle("Nombre de naissances par année, entre 1960 et 1990")+
NaissancesSexeSep <- final_table %>%
group_by(Year,Sex)%>%
summarise(NbrBirths = sum(Number))
ggplot(NaissancesSexeSep,aes(x=Year,y=NbrBirths, color = Sex))+
geom_line(size=5)+
geom_point()+
ggtitle("Nombre de naissances par année, sexe séparés")
####################################################################
# Partie 3 - Les prenoms les plus communs #
####################################################################
##############
#Depuis 1880 #
##############
#########
#Hommes #
#########
PrenomsHommeDepuis1880 <- final_table %>%
group_by(Name)%>%
filter(Sex == "M")%>%
summarise(
NumberOfBirths = sum(Number)
)%>%
arrange(desc(NumberOfBirths))%>%
top_n(5)
ggplot(PrenomsHommeDepuis1880,aes(x=Name,y=NumberOfBirths))+
geom_bar(stat = "identity")+
ggtitle("Most given male names since 1880")
# Create Data
PrenomsHommeDepuis1880 <- data.frame(
name=c('James','John','Robert','Michael','William','Others'),
value= c(2.89,2.86,2.70,2.44,2.34,86.77)
)
# Basic piechart
ggplot(PrenomsHommeDepuis1880, aes(x="", y=value, fill=name)) +
geom_bar(stat="identity", width=1) +
coord_polar("y", start=0)+
theme_void()
#########
#Femmes #
#########
PrenomsFemmesDepuis1880 <- final_table %>%
group_by(Name)%>%
filter(Sex == "F")%>%
summarise(
NumberOfBirths = sum(Number)
)%>%
arrange(desc(NumberOfBirths))%>%
top_n(5)
ggplot(PrenomsFemmesDepuis1880,aes(x=Name,y=NumberOfBirths))+
geom_bar(stat = "identity")+
ggtitle("Most given female names since 1880")
name= c('Mary','Elizabeth','Patricia','Jennifer','Linda','Others')
value= c(2.35,0.94,0.89,0.84,0.83,94.15)
# Create Data
PrenonesFemmes1880 <- data.frame(name,value)
# Basic piechart
ggplot(PrenonesFemmes1880, aes(x="", y=value, fill=name)) +
geom_bar(stat="identity", width=1) +
coord_polar("y", start=0)+
theme_void()
#####################
#Entre 2000 et 2019 #
#####################
#########
#Hommes #
#########
PrenomsHommeDepuis2000 <- final_table %>%
group_by(Name)%>%
filter(Sex == "M")%>%
filter(Year>2000)%>%
summarise(
NumberOfBirths = sum(Number)
)%>%
arrange(desc(NumberOfBirths))%>%
top_n(5)
ggplot(PrenomsHommeDepuis2000,aes(x=Name,y=NumberOfBirths))+
geom_bar(stat = "identity")+
ggtitle("Most given male names since 2000")
NbrMaleBirths2000 <- final_table %>%
group_by(Sex)%>%
filter(Sex == "M")%>%
filter(Year>2000)%>%
summarise(
NumberOfBirths = sum(Number)
)
top5MaleNames2000 <- PrenomsHommeDepuis2000%>% summarise(
N=sum(NumberOfBirths)
)
OtherMaleNames2000 <- (NbrMaleBirths2000[2] - (top5MaleNames2000[1]))
# Create Data
PrenomsHomme2000 <- data.frame(
name=c('Jacob','Michael','Ethan','William','Mathew','Others'),
value= c(402290,363299,335423,333255,317778,OtherMaleNames2000)
)
# Basic piechart
ggplot(PrenomsHomme2000, aes(x="", y=value, fill=name)) +
geom_bar(stat="identity", width=1) +
coord_polar("y", start=0)+
theme_void()
#########
#Femmes #
#########
PrenomsFemmeDepuis2000 <- final_table %>%
group_by(Name)%>%
filter(Sex == "F")%>%
filter(Year>2000)%>%
summarise(
NumberOfBirths = sum(Number)
)%>%
arrange(desc(NumberOfBirths))%>%
top_n(5)
ggplot(PrenomsFemmeDepuis2000,aes(x=Name,y=NumberOfBirths))+
geom_bar(stat = "identity")+
ggtitle("Most given female names since 2000")
NbrFemaleBirths2000 <- final_table %>%
group_by(Sex)%>%
filter(Sex == "F")%>%
filter(Year>2000)%>%
summarise(
NumberOfBirths = sum(Number)
)
top5FemaleNames2000 <- PrenomsFemmeDepuis2000%>% summarise(
N=sum(NumberOfBirths)
)
OtherFemaleNames2000 <- (NbrMaleBirths2000[2] - (top5FemaleNames2000[1]))
name= c('Emma','Olivia','Emily','Isabella','Sophia','Others')
value= c(363402,327356,315202,313471,293494,OtherFemaleNames2000)
# Create Data
PrenomsFemme2000 <- data.frame(name,value)
# Basic piechart
ggplot(PrenomsFemme2000, aes(x="", y=value, fill=name)) +
geom_bar(stat="identity", width=1) +
coord_polar("y", start=0)+
theme_void()
##############################################
# The evolution of the name James since 1880 #
##############################################
EvolutionJames <- final_table %>%
group_by(Year)%>%
filter(Name == "James")%>%
summarise(
NumberOfBirths = sum(Number)
)
ggplot(EvolutionJames,aes(x=Year,y=NumberOfBirths))+
geom_line(size=5)+
geom_point()+
ggtitle("The evolution of the name James since 1880")
##############################################
# The evolution of the name Mary since 1880 #
##############################################
EvolutionMary <- final_table %>%
group_by(Year)%>%
filter(Name == "Mary")%>%
summarise(
NumberOfBirths = sum(Number)
)
ggplot(EvolutionMary,aes(x=Year,y=NumberOfBirths))+
geom_line(size=5)+
geom_point()+
ggtitle("The evolution of the name Mary since 1880")

2000
yob1880.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

1935
yob1881.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

2127
yob1882.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

2084
yob1883.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

2297
yob1884.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

2294
yob1885.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

2392
yob1886.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

2373
yob1887.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

2651
yob1888.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

2590
yob1889.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

2695
yob1890.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

2660
yob1891.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

2921
yob1892.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

2831
yob1893.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

2941
yob1894.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

3049
yob1895.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

3091
yob1896.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

3028
yob1897.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

3264
yob1898.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

3042
yob1899.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

3730
yob1900.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

3153
yob1901.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

3362
yob1902.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

3389
yob1903.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

3560
yob1904.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

3655
yob1905.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

3633
yob1906.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

3948
yob1907.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

4018
yob1908.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

4227
yob1909.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

4629
yob1910.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

4867
yob1911.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

6351
yob1912.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

6968
yob1913.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

7965
yob1914.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9357
yob1915.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9696
yob1916.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9913
yob1917.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10398
yob1918.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10369
yob1919.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10755
yob1920.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10857
yob1921.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10756
yob1922.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10643
yob1923.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10871
yob1924.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10638
yob1925.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10458
yob1926.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10406
yob1927.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10159
yob1928.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9822
yob1929.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9791
yob1930.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9298
yob1931.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9380
yob1932.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9012
yob1933.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9180
yob1934.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9038
yob1935.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

8893
yob1936.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

8946
yob1937.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9031
yob1938.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

8918
yob1939.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

8961
yob1940.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9086
yob1941.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9424
yob1942.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9408
yob1943.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9152
yob1944.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9025
yob1945.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

9706
yob1946.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10371
yob1947.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10241
yob1948.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10270
yob1949.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10305
yob1950.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10463
yob1951.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10645
yob1952.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10837
yob1953.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

10981
yob1954.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

11122
yob1955.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

11339
yob1956.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

11568
yob1957.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

11526
yob1958.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

11768
yob1959.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

11925
yob1960.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

12180
yob1961.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

12211
yob1962.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

12285
yob1963.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

12398
yob1964.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

11953
yob1965.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

12155
yob1966.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

12400
yob1967.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

12938
yob1968.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

13751
yob1969.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

14778
yob1970.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

15297
yob1971.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

15415
yob1972.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

15683
yob1973.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

16249
yob1974.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

16946
yob1975.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

17395
yob1976.txt 一般檔案

檔案差異因為檔案過大而被隱藏 載入差異

本差異變更的檔案數量過多導致部分檔案未顯示 顯示更多