ML_algorithms
Questo commit è contenuto in:
parent
2f00d82aff
commit
1c56585b4e
2 ha cambiato i file con 4 aggiunte e 50 eliminazioni
|
@ -1,11 +1,13 @@
|
||||||
#!/usr/bin/env python3
|
#!/usr/bin/env python3
|
||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
"""
|
"""
|
||||||
Created on Sat Dec 11 15:40:46 2021
|
Created on Wed Dec 15 19:07:59 2021
|
||||||
|
|
||||||
@author: chouiya
|
@author: chouiya
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
from time import time
|
from time import time
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
@ -105,52 +107,4 @@ for s in change_percent:
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#*******************Variation de la taille de l'echantillon training *****************
|
|
||||||
|
|
||||||
tab_sample=[5000,6000,8000,10000,20000,50000,70000]
|
|
||||||
for x in range(len(tab_sample)):
|
|
||||||
index= np.random.randint(70000, size=tab_sample[x])
|
|
||||||
data = mnist.data[index]
|
|
||||||
target = mnist.target[index]
|
|
||||||
clf = neighbors.KNeighborsClassifier(10)
|
|
||||||
xtrain, xtest, ytrain, ytest = train_test_split(data, target, train_size=0.8)
|
|
||||||
clf.fit(xtrain,ytrain)
|
|
||||||
prediction = clf.predict(xtest)
|
|
||||||
score = clf.score(xtest, ytest)
|
|
||||||
|
|
||||||
print("sample size= {} , accuracy = {} ".format(tab_sample[x], score))
|
|
||||||
|
|
||||||
#*****************Variation du type de la distance p *******
|
|
||||||
xtrain, xtest, ytrain, ytest = train_test_split(data, target, train_size=0.8, test_size=0.2)
|
|
||||||
|
|
||||||
for i in range(0,3):
|
|
||||||
|
|
||||||
tab_dist=["manhattan","euclidean", "minkowski"]
|
|
||||||
|
|
||||||
|
|
||||||
clf = neighbors.KNeighborsClassifier(10, p=(i+1))
|
|
||||||
clf.fit(xtrain,ytrain)
|
|
||||||
prediction = clf.predict(xtrain)
|
|
||||||
score = clf.score(xtrain, ytrain)
|
|
||||||
print("type de distance : {}, Score: {}".format(tab_dist[i], score))
|
|
||||||
|
|
||||||
|
|
||||||
# ************** fixer n_jobs à 1 puis à -1 **********
|
|
||||||
|
|
||||||
|
|
||||||
for i in [-1,1]:
|
|
||||||
clf = neighbors.KNeighborsClassifier(5,n_jobs=i)
|
|
||||||
clf.fit(xtrain, ytrain)
|
|
||||||
time_start = time()
|
|
||||||
prediction = clf.predict(xtest)
|
|
||||||
time_stop = time()
|
|
||||||
score = clf.score(xtest, ytest)
|
|
||||||
print("n_jobs : {}, Temps total : {}".format(i,time_stop-time_start))
|
|
||||||
|
|
||||||
|
|
0
np
File normale
0
np
File normale
Caricamento…
Crea riferimento in una nuova segnalazione